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ABSTRACT

Four pinned-base steel arches with a 96-inch radius, 143.8-inch span, and uniform cross
section were cold-rolled from 4M13 sections and tested under various static and dynamic
loads uniformly distributed over one-half the arc length. A maximum static load of
72, 000 pounds was applied by the NCEL blast simulator using co,,mpressed air. A dynamic
peak load of 64, 000 pounds was attained by detonating Primacord in the blast simulator. The
blast loading had a rise time of about 3 milliseconds and a decay time of about 1.6 seconds.
An equivalent triangular load-time function was used for the dynamic analysis. The applied
loads and the resulting deflections, strains, and reactions we,.e measured. The reduced data
are presented in graphical and t-.bular form.

The theoretical analyses for statically and dynamically loaded arches were based on the
discrete framework which represented the continuous archct tested. A 16-bar system was
used for both static and dynamic response calculations, md a 40-bar system was used for
natural mode and frequency calculations.

In the static analysis, the effects of stress amplification, misalignment, and elastic
supports on the response of the arch were considered. Due to the strain-hardening
characteristics of the arch material, the idealized stress-strain curve was represented by a
trilinear curve rather than by the usual bilinear stress-strain curve.

A simplified dynamic analysis gave results reasonanly close to those frum more
rigorous methods; the values were on the conservative side. Nearly complete correlation
between the theoretical and experimental results was obtained.

This work was sponsored by the Defense Atomic Sjpport Agency.
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INTRODUCTION

The purpose of this report is to provide information on the theoretical and experimental
behavior of two-hinged steel circular arches subjected to uniformly distributed static and
dynamic loads on one-half the arch. Many theories and procedures have been advanced in
recent years for determining the eiastic and elastoplastic response of structures to uniformly
distributed dynamic loads. However, due to the lack of large dynamic testing facilities, there
have been few direct comparisons of the theoretical and experimental behavior of large-scale
models.

The blast simulator at the U. S. Naval Civil Engineering Laboratory can test nearly
full-sized structural members under transient loads up to IR5 psi.

This report covers the third and last phase of tests on structural steel members; the
first dealt with the static and dynamic behavior of portal-frame knee connectionsI and the
second with static and dynamic behavior of pinned- and fixed-base portal frames. 2,3 For the
third phase, four steel arches of 96-inch radius and 143. 8-inch span were designed, fabri-
cated, aid Leted. The primary objective- u Lthe LetL series were to obtain information on the
behavior of members subjected to static and dynamic loads and to examine the behavior and
failure mode of the members under static and dynamic loads. The information obtained will
be used to recommend changes in the present design criteria of structures subjected to blast
loads.

The work was accomplished under Work Unit Y-F008-08-02-102, Blast Resistance of
Structural Shapes, and was sponsored by the Defense Atomic Support Agency through the
Naval Facilities Engineering Command.

Wherever possible, symbols used in this report are Lhose recommended by the Defense
Atomic Support Agency. A complete list of symbols appearing in this report precedes the

1' appendixes.

EXPERIMENTAL TECHNIQUES AND PROCEDURES

Design Procedure and Description of Arch

Two criteria in determining the size and strength of the antisymmetrically loaded arches
to be tested were that they should fit in the blast simulator and that the maximum load should
be limited to approximately 50 percent of the capacity of the simulator. It was determined
that the central angle of the arch would be 97 degrees and the radius to the neutral axis would
be 96 inches. The width between the skirts of the simulator is 8 inches. In previous tests, it
was determined that the most efficient width of the test member should be between 7-3/4 and
7-7/8 inches.

With these dimonsions and loading conditions, the mechanism method of plastic design
was used. 4,5 It should be noted that the load produces sidesway and that plastic hinges
develop in the vicinity of the quarter points, b and d, as shown in Figure 1. The instantaneous
center of rotation then lies at the intersection, c, of straight lines drawn through the hinge
points, a and b, and d and e; the central angle is designated 00. For simplicity, the load, w,
has been replaced by two resultant forces, F 1 and F 2 , acting normal to chords ed and dk.
"From Figure 1, the following geometrical relations can be obtained:
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External work for very small deflections is determined as follows:
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since

'i F- 1  F 2  2Rw Isn.)

A -2RO Sn' o

0 00

cos 8 2 cos 3,,

I

0s s i n _ _ .
WE FR kb in 8 +

(s 2 cos 8-0

or by using Equation 1, and employing identities

WE = 2FRt sin0 (3)

Internal work is determined as follows:

From Figure 1, it can be shown that

Wi = 2M tp(+') 4M P cos - (4)

Equating (3) and (4) and solving

1

Mp =-R 2 wI COST (5)

P 2 \ Cos~ I

Since q$ is equal to 97 degrees
0

M = 0.0484 R2 w (6)
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Using a radius of 96 inches and a design yield load of. 75 x 8 or 600 lb/in., the plastic moment
is calculated as

M = 267, 384 in. -lbP

The plastic modulus, Z, is then

M

Z = . M .23 = 6.68 in. 3

f 40, 000=

By referring to a plastic modulus table, a reasonable section was chosen as

4M13 lb

Z = 6.1 in.
3

A section with a smaller plastic modulus was selected for testing in the blast simulator
because the width of the top flange would have to be increased to about 7-3/4 inches. After
the arch was rolled into shape, two steel strips 1-7/8 inches by 5/8 inch were welded to the
top flange of the arc es as shown in section B-B of Figure 2. The total area of the cross
section was 6. 16 in.i. For this cross section, the elastic neutral axis was computed to be
2.64 inches above the base of the lower flange and the moment of inertia was computed to be
14.84 in. 4 . The plastic neutral axis was found to be 3.58 inches above the base of the lower
flange and the plastic modulus was 7.15 in. 3. Needle roller bearings were fastened to the
transverse web stiffener (as shown in Figure F-1) to reduce friction as the arch deflected.

Loading System

The blast simulator (Figure 3) was used to t"9t the antisymmetricaily loaded arches.
The load applied simulated a blast wave from a, .. r burst initially striking the surface of the
arch at one of the quarter points and also perpendicular to the longitudinal axis. The response
of the arch, as the blast wave engulfed the entire arch, was not taken into account in this test
program. For testing these arch'., special extension plates, 6 feet in height and 8 feet in
length, were bolted to the bottc:-i of the blast simulator and tied together by three sets of
massive collar beams to prevent separation. Figure 4 shows one side of the extension plates
removed, exposing the arch to be tested. Static loads were applied by pumping air into the
simulator from a compressor. Dynamic loads were produced by detonating Primacord within
the firing tube in the simulator. 6 A blast loading was produced which had a rise time of
approximately 2 to 3 milliseconds followed by an experimental decay of controlled duration
(Figure 5). Leakage of the static or dynamic pressure was minimized by a neoprene seal
placed on top of the flange (Figure 4).

5
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Figure 5. Typical load-time curve.

Instrumentation

Instrumentation of the test specimens consisted of strain gages, pressure cells,
deflection gages, and an accelerometer located as shown in Figure 6. Information on the
measuring instruments is presented in Table 1. The recording equipment is shown in Figure 7.
In addition to the transducers listed in Table 1, deflection measurements were also obtained
by the use of a rotating drum gage, and the reactions were measured with a pair of
dynamometers (Figure 8) at each end of the arch. The rotating drum deflection gage revolved
at a constant speed, recording deflection and as the arch deflected, a pencil attached to the
end of a taut piano wire inscribed a deflection-time trace on the graph paper.

Test Procedure

The general test procedure for the arches was as follows: the arch was vibrated, a
static load was applied (to failure for one arch and to approximately 60 percent of yield for
the other arches), and a series of dynamic loads was applied to the arches that were not
statically loaded to failure.

Two types of vibrational mode tests were conducted. The first was to excite the lowest
natural frequency of the two-hinged arch in the deflection mode and the second was to excite
the arch in the compression mode. For both types of tests, the arch was wedged upward by
using a piece of timber at the desired location (at the quarter point for the deflection mode and
at the crown for the compression mode). The timber was suddenly knocked out with a sledge
hammer. The subsequent vibrations were recorded on the oscillograph; a typical oscillogram
is shown in Figure 9. A smooth, continuous trace indicated that the specimen was vibrating
freely in the blast simulator; the natural period of vibration was obtained from these records.

9
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Figure 8. Horizontal and vertical reactions at the loaded end of the arch.
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Figure 9. Free-vibration test of arch AH-2.
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Table 1. Instrumentation Used in Tests

Measurement Description Type or Model Manufacturer

Load 200-psi pressure cells PA208TCA-200-350 Statham Instruments,
Incorporated

Acceleration 200-g accelerometer A5A-200-350 Statham Instruments,
Incorporated

Deflection 6-, 10-, and 15-inch linear 108 Bourns, Incorporated
potentiometer

Strains SR-4 electrical resistaace A-5-1, A-R-1 Baldwin-Lima-Hamilton
strain gages Corporation

Whittemore strain gages 2-inch type Baldwin-Lima-Hamilton
Corporation

Other Recorder with 36-channel 5-119P4-36 Consolidated
oscillograph amplifiers 1-113B Elecirodynamics

Corporation

The first arch was tested statically to failure; the remaining arches were loaded
statically to approximately 60 percent of the yield load and then tested dynamically in the
elastic range. This was done so that the elastic static response of the arch could be compared
with the elastic dynamic response. Typical dynamic test data recorded on the oscillograph
are shown in Figures 10 and 11. The final dynamic load on each arch was in the inelastic
range so that information on the dynamic response over a wider range of pressure could be
obtained.

After a specimei. had been tested completely, photographs of the overall arch, including
closeups of the entire specimen, were taken (Appendix F).

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Tensile Coupon Tests

Static Tests. Standard tensile test coupons, 2-inc~h ga;e length, were fabricated from
the flange strip, the web, and the upper and lower flanges. Figure 12 identifies the locations
and symbols of static test specimens. It should be noted that the specimens were cut from the
mid-spans of the arches where very little bending moment took place during the tests. It was
assumed that the specimens were representative of the arch material before tests. Typical
stress-strain curves for each location are shown in Figures 13 through 18.

Table 2 summarizes the results of static coupon tests. The average values of yield
stress at 0. 2 percent offset were 56,200, 41,700, 55,100 and 60,500 psi for the web, flange
strips, and upper and lower flanges, respectively; the average values of ultimate strength
were 70,000, 64,400, 70,70 and.,,,,"72 ,00' psi, res~pectively; the average values of the elastic
modulus were 30.0 x 106, 30.9 x 1;6, 27.9 x 10 , and 26.7 x 108 psi, respectively, It should
be noted that the 4M13 section was less ductile than the flange strips. This fact was reflected
in the 2-inch elongation values of 34.3, 22.0, and 25.8 percent for the flange strips, the web,
and flanges, respectively; this was due to the fact that the 4M13 section had been strained
beyond the strain-hardening point during the cold-roll process (Figure 17). Further evidence
is shown in the stress-strain curves of various specimens of the arch. No characteristics of
a definite yield plateau are evident in the stress-strain curves of Figures 13, 15, and 16 for
the web and upper and lower flanges of the 4M13 section.

14
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location of specirnens,,

S•machine cut
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Figure 12. Locations of tensile test specimens for the antisymmetrically loaded arch.
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SFigure 13. Static stress-strain curves of the web of the antisymmetrically loaded arch.
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Figure 14. Static stress-strain curves of the flange strip
of the antisymmetrically loaded arch.
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Figure 15. Static stress-strain curves of the upper flange
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Figure 16. Static stress-strain curves of the lower flange
of the antisymmetrically loaded arch.
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4MI~rc •rollers

4M13 arch section

Figure 17. Cold-roll procesr of the arch.

Table 2. Static Properties of Steel for Antisymmetrically Loaded Arches

Location Yield Stress Elastic Inelastic Ultimate Elongation
of Arch No. 0. 2% Offset Modulus Modulus Strength in 2 Inches

Specimen (psi) (psi) (psi) (psi) (%M

Web* AH-2 57,100 31.0 x 106 --- 70,000 21.0
AH -3 56,500 28.9 --- 70,000 24.0
AH-4 55,000 30.1 --- 10,000 21.0

Average 56, 200 30.0 70,000 22. J

Flange AH-2 43,200 30.4 7.29 x 105 64,600 386.0
Strip AH-3 41,800 31.6 5.84 65,900 32.0

AH-4 40,200 30.7 8.60 62,700 35.0

Average 41,700 30.9 7.24 64,400 34.3

Top AH-2 57,700 27.3 --- 71,000 23.0
Flange* AH-3 53,900 29.0 --- 70,400 25.0

AH-4 53,800 27.4 --- 70,600 29.5

Average 55,100 27.9 70,700 25.8

Bottom AH-2 58,500 26.3 --- 72,:00 ---
i:-. rIantge- A- 62,600 26.6 --- 73,600 --

AH-4 60,500 27.2 --- 72, 600

___ Average 60,500 26.7 72,800

*The material was deformed beyond the strain-hardening point by the cold-roll

process during fabrication of the arches.
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Dynamc ess. To determine the increase in the yield point of the steel under dynamic
load, toal seqecteno were fabricated and then tested with the Laboratory's 50, 000-pound
dynamic materials testing machine. 7 The machine has a maxinmumr static capacity of
50, 000 pounds and head velocities up to 15 in. /see. With a booseter facility, the static load
capacity can be Increased to 80, 000 rpo-unds and the head velocity can be fincreaaed to 30 in./se..
Statically, the piston stroke is 4 Inches; at higher velocities it is 0. 75 inch. For standard
tensile specimens (0. 2 in, 2 area,, strain ragtes of 1. 5 in./In./sec can be obta~ined.

As shown in Figure 18, the specimena were taken frow both ends of ate arch, where
bending moments were small due to hinged supports. The specrimens were aseurmad ý-o be
representative of the arch material before tests.

A total of nine tensile specimens, six' Irom the web and three f rom the flange, were
fabricated and tested. Dimensions of the test spenimnenm ý& -,q shown in Figure 109. To determine
the value of the strain rate to be used for the dyn-amic trnwite tests, the st~rain rates f romi
SG-12 (Figure 6) were obtained from several dynamic test.-; the average straln rate was
0. 9 in.fin./sec. The strain rate was maximum at this point beLtvuve the 0lexura). and
compressive strains were of the samne sign. Typical stress-strain coirvees are given ir,
Figures 20 and 21 for the web and lower flange, respectively. It should be noted that the
stress-strain curve of the lower flange does not ahioy, a definite yiele plateau.

Table 3 summarizes the results of the dynamic tests. The average v'a~ueu of upper yield
stress were 70,500 psi and 69,700 psi for the web and lower flange, rcapectively; the average
values of lower yield stress were 69, 100 psi wad 66, 500 psi, respectively; the average ultimate
strengths were 80,600 psi and 82, 500 psi, respectively. The average increase In ate lower
yield point was 23.0 percent for the web and 9.8 percent for the lower flange. Thermarked
difference betwieen the two sections was due to the fact that. tie flanges had been stressed
closer to ultimate stress than the web.

When structural steels are stre~ssed above 60 percent rl the ultimate strength, strtictural
* properties of the material are changed. To illustratO the effect of %train hardening, consider

a typical stress-strain curve as shown in Figure 22, If the material were stressed to A and
unloaded, the stress-strain diagram would return to the strain axis in practically a straight
line, AB, parallel tG, the Initial straight-line portion of the diagrami. Uf tle stresa were agaiin
applied. the yield point would be raised to A, thie diagram following the dashed line. BAC. The
ultimate strength would be practically unchanged but the ultimate elong~ation would be reduced.
The effect of the single loadi.W to A is to Increase the efaotic strength and to decrease the
ratio of dyramic to atatic yield points. The higher the point A, the smaller the percent
Increase in dynamic yiekc. point. 8

Static Tests

Static test& 4' four circular arches were performed In the blast simulator as described
* earlier; the archt vere loaded along oi~e-haIlf their arc length. For the majority of the teuts,

radial deflections and strains were measured at the qua-rter points and the crown, horizontal
and vertical reactions were measured as shown in Figure 8. Only arch All-i was tested t)

* failure; the other three arches were loaded to a maximumn load of 243 lbin. During the tests
it was observed that the support cart (Figure 8) moved a fraction of an inch to the right; the
exact distance was tindetermined. This was partially due to the elastic strain of the reaction
dynamometers and partially due to the movemnent of the tiedown bolts for the support cari. By

* proportionirg the assumned total horizontal nmovemnent at the maxitnurn load, the cart movemtent
was introduced In the theoretical analysis as a boundary condition by assuming that the
deformation was proportional to the horizontal reaction load at RI; this factor was taken to~ be
6. 25 x 10-6 in. /11b.
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Table 3. Dynamic Properties of Steel for Antisymmetrically Loaded Arches

Location Upper Yield Lower Yield Ultimate Elongation Strain Increase in
of Arch No. Stress Stress Strength in 2 Inches Rate Lower Yield

Specimen (psi) (psi) (psi) (%) in.!in./sec Point (%)

Web* AH-2 74,200 72,100 83,100 24.0 0.771 26.3
AH-2 69,700 66,900 79,000 20.0 0.652 17.2
AH-3 69, 000 68,250 80,500 25.0 0.825 20.8
AH-3 73,600 72,900 83,500 27.0 1.130 29.0
AH-4 67,500 66,750 78,100 25.0 0.746 21.4
AH-4 69, 100 67,800 79,600 27.0 0.652 23.3

Average 70,500 69,100 80,600 24.7 --- 23.0

Lower* AH-2 --- 64,200** 81,000 22.5 0.517 9.7
Flange AH-3 72,500 69,100 84,300 --- 0.574 10.4

AH-4 66,900 66,200 82,100 --- 0.700 9.4

Average 69,700 66, 500 82,500 22.5 --- 9.8

*The material was deformed beyond the strain-hardening point by the cold-roll process.
**Yield point stress at 0. 2% offset.

Arch AH-1 was first preloaded to 487 lb/in, in increments of 162 lb/in. There were no
appreciable permanent strains, deformation, or residual reactions observed after this test.
Data from this test are not given in this report. Arch AH-I was then reloaded to 568 lb/in.
At this point, it was expected that certain sections of the arch would yield. The pressure was
then increased in small increments to ensure that yield conditions would be recorded. At a
load of 791 lb/in., air leakage at the neoprene seal exceeded the comlresqor capacity and a
further increase in pressure was not possible. The reduced test data are presented in
Table A-1. The maximum deflection obtained was 1.39 inches; the permanent deflection was
0.40 inch after unloading. The stiffness of the arch in the elastic range was 902 lb/in. /in.
and was close to the theoretical value of 937 lbAn./in. The strain data of Table A-1 were
transformed into moments, direct forces, principal stresses, and shears; they are given in
Table A-2.

After repair of the neoprene seal and retesting, the load-deflection curve rose slightly
higher than the point of unloading before flattening out (Figure 23). This was the result of
strain aging of the steel. 9 When strain aging is permitted, the sharp yield and yield
elongation properties of mild steel return and increase the entire stress-strain curve. The
arch collapsed at a load of 876 lb/in, with a corresponding deflection of 2. 57 inches at the
3/4-point. No deflection was recorded at the 1/4-point. Figure F-I shows the collapsed arch.
There was evidence of buckling at the lower flange of the 1/4-point as a result of compressive
strain. At the 3/4-point the lower flange and the web were ruptured.

The theoretical load-deflection values (calculated in Appendix B) are plotted in Figure 23
for comparison. Data for this test are given In Table A-3. Comparisons of experimental and
theoretical load-strain curves at the quarter points of the arch are presented in Figures 24
and 25. Excellent correlation with strain gage 4 was obtained. Other theoretical strain
curves were very close to their respective experimental curves in the elastic range but
deviated somewhat in the Ainelastic range. A comparison of theoretical and experimental
direct forces in the arch is shown in Figure 26. The experimental values showed that the
direct forces at the 1/4-point and at the crown were very close to each other but were quite
different from the direct force at the 3/4-point. Theoretically, the direct forces in the arch
did not vary much at these points, as can be seen in Figure 26. Close correlation between
the theoretical and experimental moment at the quarter points and at the crown of the arch is
evident in Figure 27. Similarly, the shearing force at the location of strain rosette
SG-13-14-15 is shown in Figure 28. The theoretical and experimental load-reaction curves
are compared in Figure 29. Close correlations are evident in all four reactions.
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Figure 23. Comparison of theoretical and experimental static load-deflection curves
for the antisvnmmetrically loaded arches.

Arches AH-2, AH-3, and AH-4 were preloaded statically to approximately 60 percent of
the yield load prior to dynamic testing. The data f-om these tests are not included in this
report; however, portions of the data are plotted in Figures 23 and 29 along with the data from
arch AH-1. The permanent strains experienced in these static preload tests were negligible.

Free-Vibration Tests

Efforts were made to obtain experimental values of natural frequencies of the deflection
mode and compression mode. However, only the lowest frequency of the antisymmetrical
mode was obtained. These results are presented in Table 4. The average natural frequency
from the experimental data was 5, cps, which agrees well with the theoretical natural
frequency of the first antisymmerrical mode, 60 cps. as shown in Table D-5 of Appendix D.
The theoretical value was obtained from a 40-bar distributed mass system.
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Figure 24. Comparison of theoretical and experimental strains at the 1/4-point
of the antisymmetrically loaded arch.

Table 4. Summary of Free-Vibration Test of Antisymmetrically Loaded Arches

Natural Natural Damping Logarithmic Coulomb
Arch Period, Avg Frequency Ratio Decrement Damping
No. Tn W6

(msec) (cps) cr 6 ,

AH-1 18.5 54.1 0.0930 0.587 -0.00507

AH-2 18.0 55.6 0.0975 0.616 0.000597

AH-3 19.1 52.4 ---...

Average 18.5 54.0 0.0953 0.602 0.00283
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L. When viscous damping is present in an oscillating structural member, the degree of
damping or the rate of decay is measured by means of the logarithmic decremernt, 6, which is
expressed as follows:

I - in
n xn

71 xn

where x. is the initial amplitude and xn is the amplitude at the nth cycle from the initial point.
When dry friction or Coulomb damping is also present with the viscous damping, the use of the
above equation will lead to erroneous fsults. A semigraphical trial-and-error method has
been presented by Jacobson and Ayre;su however, the procedure requires skilled judgment
and can lead to inconsistent results. A method presented by DaDeppo 1 1 applies least-square
iteration to determine the damping constants for a dry-friction, vlscous-damped system. The
method is not well suited to manual computation. A program is presented in Appendix B for
calculating the damping constants by means of a digital computer. The experimental decay
records of the arches were analyzed by this computer program. The value of the logarithmic
decrement, 6, the damping ratio, ce/cc, and the Coulomb damrping, A, are presented in
Table 4. The damping ratio is defined as the ratio of the coefficient of viscoos damping, ce, to
the critical damping coefficient, cc. The average value of the damping ratio for the first anti-
symmetrical mode was 0.095. In the theoretical analysis, the damping factor waa expressed in
"the compression mode, and a corresponding value of 0.018 was used as discussed in Appendix
C. A typical free-vibration record is shown in Figure 9.
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Figure 25. Comparison of theoretical and experimental strains at the 3/4-point
of the antisymmetrically loaded arch.
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Figure 28, Comparison of theoretical and experimental shearing forces in the
antisymmetrically loaded arch at strain rosette SG-13, 14, 15.

Dynamic Tests

After a maximum static load of 243 lb/in, was applied and unloaded, arch AH-2 was
subjected to six dynamic loads of increasing magnitudes, with peak loads between 116 lb/in.
and 780 lb/in. The postshot view of the arch is shown in Figure F-4. Maximum values of
strains, reactions, deflection, and acceleration at the 3/4-point were obtained from data
recorded on the oscillograph paper as shown in Figure 10.

Similarly, arches AH-3 and AH-4 were tested dynamically to peak loads of 780 lb/in.
and 664 lb/in., respectively. Reduced data of all the dynamic tests are presented in
Tables A-4 and A-5.

In comparing the strain values, it was found that the strains at the lower extremity of the
3/4-point were higher than the same location of the 1/4-point for each dynamic load. At a
peak load of 780 lb/in., strain gages SG-4 and SG-12 indicated strains of 7,090 Mln./in. and
6,940 pin./in., respectively; a similar relationship was observed in the static test data.

It should be noted that certain dynamic tests did not yield valid data and are therefore not
recorded in Tables A-4 and A-5. The strain data of Table A-4 were taken at each peak value,
which presented a problem in correlation of theoretical and experimental response because all
the peak strains did not occur at the same time. Only a portion of the data in the elastic range
of arch AH-2 was analyzed, and the resulting moments, direct forces, principal and shearing
stresses are summarized in Table A4 and Figures A-3 and A-4. The strain data of arches
AH-2, AH-3, and AH-4 are plotted in Figures A-5, A-6, and A-7, respectively.

The load-deflection curves for both theoretical and experimental results are given in
Figure 30. The experimental load-deflection curve represents the mean values of the data
taken from the maximum values of each test of arches AH-2, AH-3, and AH-4. The theoretical
curve is plotted from the data of Appendix C. Good correlation between the theoretical and
experimental curves is evident in Figure 30.
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Figure 30. Comparison of dynamic load-deflection curves for
the antisymmetrically loaded arch.

Figure 31 shows the comparison of the theoretical and experimental moments of the
crown and quarter points oi arch AH-2. Only experimental moments in the elastic range are
presented for comparison. Moments at the quarter points show good agreement, but the
moments at the crown do not agree very well. It is believed that the disagreement of moments
at the crown of the arch Is due primarily to the inaccuracy of the small strain readings of
SG-5 through SG-8. The experimental values of direct forces did rot agree with the theoretical
values because the peak values of the strains did not occur simultaneously. In the calculation
of experimental direct fGrces, the algebraic sum of different strains at the upcper and lower
extremities was taken. Small inaccuracies will result in large differences in the direct
force.

The axial forces obtained from the simplified analysis (Appendix E) were very close to
those obtained from the more rigorous analysis of Appendix C. However, the values of
bending moment were notably higher in the same comparison, since the damping was not
considered in the simplified analysis. The axial forces have time variations which correspond
to the second symmetrical mode and the momtent has a time variation which correspods to the
first antisymmetrical mode. Obviously, the damping effect on the moment was much higher
than on the axial force.
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GENERAL DISCUSSION

Design, Behavior, and Analysis of the Arches

The depth and width of the arches were limited to 4 inches and 7-3/4 inches,
respectively, because of the physical dimensions and safe-load capacity of the blast simulator.
To provide symmetry of the cross section with respect to the neutral axis would have required
the use of a thin-gaged steel member. As a compromise, a top-heavy section was selected
for the arches, consisting of a 4M13 cold-rolled section with steel strips, 5/8 inch by
1-7/8 inches, welded to each side of the top flange. In the cold-roll process, the 4M13
section was strained beyond yield. The flange strips were cold-rolled separately and then
welded to the 4M13 section; as a result the flange strips were inelastically strained less than
the 4M13 section. The strain-hardening properties of the flange strips and the 4M13 section
were determined by static and dynamic tensile coupon tests.

Because of the strain hardening encountered in the cold-roll process, the static and
dynamic stress-strain curves of the material did not exhibit a definite yield point. It was
also observed that the total elongation of the tensile specimens was less for strain-hardened
steel than for similar material that was not strain hardened. It is believed that the arches
would have deflected more at ultimate load if these strain-hardening effects had not been
present. Furthermore, the ultimate ]oad of the arch was limited by the ultimate strength of
the lower flange. As the lower flange was stressed into the inelastic range, the neutral axis
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moved closer to the upper flange which caused the strain in the lower flange to increase more
rapidly. As the arch approached the ultimate load, a considerable portion of the arch
remained in a low-stress state at the critical section; thus, failure occurred before the full
ductile potential of the arch was developed.

In the analysis, it was necessary to consider the nonhomogeneous section created by the
4M13 section and the flange strips. It was desirable to express the stiffness properties of the
cross section is the products El and EA. Separation of the modulus, E, from these product
terms wouia have complicated the analysis.

Due to the lack of a definite yield plateau in the steel used in the arches (particularly the
flanges), a trilinear stress-strain curve was used for the static analysis. Ordinarily this
would not be necessary since the cold-roll process is not generally used in the fabrication of
large arches. The analytic method presented in Appendix B is valid for materials with
bilinear or trilinear stress-strain curves or even for a material that does not have an elastic
range.

In the elastic range, the static analysis initially involved solving a statically determinate
arch without the redundant reactions (the two-hinged arch has one redundant reaction and a
fixed-end arch haz three). The redundant reaction can then be obtained by satisfying the
boundary conditions at the supports. In this analysis, elastic supports as well as rigid
supports can be handled.

In the inelastic range, the incremental stress method was used along with an iteration
process to determine various locations of yielding until the ultimate strength was reached at
some location in the arch. The analysis was carried only as far as the development of the
ultimate strength.

Analysis of the two-hinged arch of uniform cross section indicated that moments at the
crown were small for a uniform load distributed over one-half the arch. This suggested that
the placement of a third hinge at the crown would not substantially alter the behavior of the
arch. Thus, a three-hinged arch would support the loads as well as the two-hinged arch. The
analysis of a three-hinged arch is much simpler than that of a two-hinged arch. In addition,
such a statically determinate arch would not be subjected to the effects of thermal stress,
differential settling of the support, and initial misalignment. Furthermore, the variation in
cross section could be handled with less difficulty.

Dynamic analysis of the arch employed a discrete framework in both the elastic and
inelastic ranges. The mass of the arch was concentrated at the flexible joints, which were
connected by rigid bars. An iteration process was used to obtain the forces and displacements
at each joint by satisfying the respective equations of motion. The numerical integration
method by Newmark was an essential tool in this analysis. I

An additional assumption was made for the dynamic analysis in the inelastic range. The
cross section of the arch was represented only by the two flanges. This assumption was
desirable due to the complexity of the bilinear stress-strain relationship (Figure C-5) in the
loading and unloading process. Accuracy of the dynamic analysis by the iteration process
depends largely on the simplicity of the idealizt;1 stress-strain curve and the number of the
joints in the discrete framework. Convergence of iteration is slow if these factors are
complicated.

In the determination of natural frequencies and mode shapes (Appendix D), it was found
that the distributed-mass system provided better results than the concentrated-mass system
for the same number of joints. However, it is believed that the use of a distributed-mass
system for the dynamic response theory would undesirably complicate the analysis and
Increase calculation time.

In the actual arch tests, there were numerous contributions to total damping of the
system: viscous damping (internal and external), Coulomb damping, and damping at the
supports. To separate the effect of each type of damping would require extensive study of the
properties of the material; this study was not justified from an engineering standpoint. The
damping factor used in the theoretical ,evelopment was obtained experimentally from the
free-vibration tests in the deflection mode and represented the combined effect from all
sources. It is believed that the supports provided a major contribution to the total damping;
the number and quality of the support connections greatly influenced the damping charac-
teristics of the arch. Also, it is believed that a three-hinged arch would have higher damping
than a two-hinged arch or a hingeless arch, provided other factors remained unchanged.

35



U

The simplified dynamic analysis of Appendix E is a rapid, easy method of obtaining
information on a portion of the dynamic response of an antisymmetrically loaded arch. This
method ta limited to the response of the quarter point of the loaded side of the arch. The
damping effect was not considered in the analysis and, as a result, the moment va'ues were
larger than their counterparts in Appendix C. The values of axial forces obtained from the
simplified analysis compared very well with those of the more rigorous analysis.

The digital computer proved indispensable in both the static and dynamic analyses of the
arch system, particularly when elastic supports were involved.

Effect of Load History

The effect of load history on the dynamic response of structures had been reported for
structural connections and portal frames. 1, 2, 3 In the static test of arch AH-1, pressure
leakage necessitated unloading and reloading the arch after certain portions of the lower flange
had been strain-hardened. The load-deflection curve for the reloading was higher, before it
became flat, than the initial loading curve. This effect is known as strain aging. 5 When the
metal is strained and then aged, the sharp yield and the yield elongation may return and
increase the resistance of the material. This phenomenon is accompanied by a decrease in the
ductility of the steel. 4 , 5 Multiple loading of the arch will reduce the flexibility of the arch in
the inelastic range, particularly near the ultimate load. The cold-roll fabrication process of
the arch can be considered a form of loading; its effects have been discussed in the previous
section.

Application of Results

Correlation of the theoretical and experimental data provides a basis for design of archstructures to resist blast loading. The information contained in this report can be used to

refine the design and fabrication of arch structures.
This study applies only to the loading, support conditions, and configuration of the arch.

Generalization of the results to produce a simplified method for the solution of arch problems
should be performed with caution. In relating the results of this investigation to design
practice, particular care must be taken to examine the load and mass distributions, stiffness
characteristics, and support condition of the structure. The methods and computer program
for the theoretical solution of arch behavior provided in this report can be used to study arches
of other configurations and loading, provided proper input parameters are employed.

Accuracy of Measurements

The instrumentation used in this experiment was carefully selected and calibrated before
testing. The obtained measurements are believed to be accurate within the manufacturer-

* recommended tolerance of each measuring device. Data reduction, although subject to human
error, was carefully performed and checked to eliminate all significant errors. The reduced
experimental data are assumed to have the following accuracy:

Data Accuracy (%)

Static:
Pressure 2 to 3
Reaction 2 to 3
Deflection 2 to 3
Strain 4 to 5

Dynamic:
Pressure 4 to 5
Reaction 4 to 5
Deflection 4 to 5
Strain 8 to 10
Strain rate 10 to 12
Acceleration 12 to 15
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Conversion of the experimental data for comparison with the theoretical solutions was
performed by a computer. The results are believed to be as accurate as the assumptions
permit.

FINDINGS AND CONCLUSIONS

The experimental tests and the theoretical solutions included in this report are limited to
a specific two-hinged arch with certain loading conditions; however, some of the findings and
conclusions are applicable to arches with other loading and support conditions and
configurations.

General

1. Tensile coupon tests indicated that the steel used in the arches was strain hardened; the
material lacked a definite yield plateau common to structural steel and consequently was better
represented by a trilinear stress-strain curve than by the usual bilinear curve.

2. The ductility of the arch material was reduced primarily by the strain resulting from the
cold-roll process; the arch failed before the ductile potential was developed.

3. When the material was strain hardened and then aged, as when the arch was unloaded and
loaded in the inelastic range, the stress rose above the original stress-strain curve and the
ductility of the material was considerably reduced.

4. The failure modes for both the statically and dynamically loaded arches were similar. The
governing factor was the ultimate stress at the lower flanges of the quarter points.

Static Tests

1. Good correlation was obtained between experimental behavior and the theoretical analysis
in the elastic and inelastic ranges.

2. The deflected shape of the arch was basically antisymmetricai, with a rotation of the chord
connecting the two hinges introduced by the yielding supports.

3. Bending moment was the predominant factor in the stress and strain distribution in the
arch; the direct axial forces exerted only a minor effect in developing the stress and strain in
the arch.

4. The yielding support on the loaded end reduced the axial forces in the arch. increased the

bending moment and deflection on the loaded half of the arch, and decreased the moment and
deflection on the unloaded half of the arch.

5. The maximum bending moment and deflection occurred very near the quarter points of the
arch, where the shearing forces were zero.

6. The maximum stresses occurred in the lower flanges of the quarter points.

7. The crown of the arch, which was very close to the point of contraflexure, maintained a
very low bending moment throughout the loading history.

8. Collapse occurred when the ultimate stress at the lower flanges of the quarter points was
reached.

Dynamic Tests

1. The theoretical analyses satisfactorily predicted the experimental dynamic behavior of the
arches in the elastic and inelastic ranges. The simplified analysis proved to be sufficiently
accurate for design purposes.
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2. The time-dependent displacements occurred at a frequency corresponding to the first
antisymmetrical mode of the free vibration of the arch. This indicated that the first
antisymmet. Ical mode was predominant in the response.

3. The axial force remained essentially uniform along the length of the arch and varied with
time according to the frequency of the second symmetrical :node of the arch (breathing mode).

4. The bending moments varied with time at the frequency of the first antisymmetrical mode
of the arch. Although some contribution of the third ar.tisymmetrical mode was observed, the
first antisymmetrical mode definitely made the main contribution to the moment.

5. Maximum stresses occurred at the lower flanges of the quarter points primarily due to
bending action.

6. Bending moment at the crown of the arch was very small for all dynamic tests.

7. Damping of the system had an important effect on the bending response of the arch; its
effect on the axial force was small.

DESIGN RECCMMENDATIONS

The methods used in the design of arch structures depend on such factors as the material
used, geometry of the arch, conditions of loading and support; and the distributlcn of mass
and stiffness along the arch. The two-hinged arch discussed in this report is only one specific
case. However, certain design recommendations can be drawn from the theoretical analyses
and experimental data which apply to two-hinged circular arches subjected to ovcrpressure
from a traveling blast wave.

Static Design and Analysis

The ultimate strength of the antisymmetrically loaded two-hinged arch is essentially
limited by the moment-resisting capacities at the quarter points of the arch. This suggests
that special reinforcement of the arch sections in the form of cover plates, or increased depth
at the critical sections will considerably increase the ultimate strength at a small increase in
fabrication cost.

The bending moment at the crown remained low throughout the entire loading history.
This suggeste tWAat a three-hinged arch (hinges at the supports and the crown) of the same
cross section will respond very much like the two-hinged arch. Thus it would be logical to
consider a three-hinged arch as the first alternate design of the two-hinged arch. As a
statically determinate structure, the three-hinged arch is less affected by thermal stress,
differential settling of supports, and initial misalignment. The stress level is more readily
controlled for certain loading conditions.

The arch response is very sensitive to the support conditions. It is essential that proper
evaluation of the structural foundation be made before designing the arch. For arches resting
on elastic supports, the axial forces in the arch will decrease and the bending moments will
increase with increasing flexibility of the supports. In case of uncertainty, the design should
be adequate for the twc worst conditions.

The unbalanced arch cross section has a tendency to limit the moment-resisting capacity
of the arch according to the yield strength of one flange. As the inelastic strain develops, the
neutral axis moves away from the flange having higher stress and thus accelerates the
str-i"ing process. For isotropic materials (most metals can be considered isotropic for
design purposes), a balanced cross section is essential for the most economical design.

Strain hardening of the steel reduces its ductility; as a result, collapse of a
strain-hardened arch occurs at the ultimate load with little warning. The use of strain-
hardened rmaterial is not recommended for arch construct on. In particular, a cold-roll
proc:ess should not be used to fabricate arches other than model arches and sheet metal
arches.
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The use of a digital computer ean be of great value in the arch analysis particularly when
elastic supports are involved. The programs presented in Appendix B may be readily modified
for arches of different geometries and support conditions.

Quasi-pseudo static response may be obtaited from the dynamic solution by introducing a
high level of damping. A damping factor of 0.3 proved to be satisfactory for the arch under
consideration.

Dynamic Design and Analysis

For long-duration loads (in which the ratio of the load duration to the natural period of
the arch is greater than ten), dynamic bending moments at the quarter points are equal in
magnitude. However, the combination of moment and direct force will cause the lower flange
of the quarter point on the loaded portion of the arch to yield first.

Maximum stresses are contributed primarily by bending. Special reinforcement by
varying the effective depth of the arch sections at the quarter points is desirable. For
dynamically loaded structures, the increased depth is more efficient reinforcement than cover
plates because less mass is involved.

Rapidly strained steel exhibits a considerable increase in dynamic yield point; referenceE
2 and 3 report results for initially unstrained specimens of A-7 mild steel. No research has
been found which reports the increase in dynamic strength of steel after it had been previously
strained into the strain-hardening region. Indications from this investigation are that the
percentage increase in dynamic strength properties diminishes after previous inelastic
straining has occurred. Specimens from some of these arches exhibit strength increases of
about 10 percent for strain rates of 0.5 in./in./sec.

The level of damping is very important for the calculation of dynamic response of the
arch. A damping factor of 0. 1 will probably be appropriate for most steel arches.

Due to the absence of the damping terms, the use of the simplified analysis in Appendix
E is limited to systems of light damping. This is demonstrated in the comparisons of axial
force and moment obtained from the simplified and more rigorous dynamic solutions.

Similar to the static response, the bending moment at the crown for dynamic load
remains low. Consideration of a three-hinged arch is also valid for dynamically loaded
arches. In addition, the damping value will be higher for a three-hinged arch of similar
cross- section properties.

The efficient use of a digital computer is essential in obtaining accurate dynamic
response of the arch. The dynamic solution by the method of numerical integration- is
impractical, if not impossible, by manual calculation.

ACKNOWLEDGME NTS

The authors wish to acknowledge the contributions of the following people:

Dr. Bruce G. Johnston of the University of Michigan, for the design of the structural
arch and test fixtures and for the preliminary static analysis.

Dr. Richard T. Eppink of the University of Virginia, for the preliminary theoretical

analysis of Appendixes C, D, and E.

LIST OF SYMBOLS

General Note:

Superscripts: Refer to:

1, r left and right sides of a joint

x• first derivative of x with respect to time

x" second derivative of x with respect to time
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Subscripts:

h, i, J, k, 1, m designations for location of joints

x, y designations for x, y direction

r, t radial and tangential components

u, I upper and lower flanges

t, b top and bottom flanges of the two-flange representation of the
cross section

A symmetrical matrix for natural mode and buckling load equation

Aim static stress amplification factor at joint J

Am static amplification factnr for the simplified analysis

"At, Ab area of top and bottom flanges of the two-flange representation of the
cross section (in.)

B symmetrical matrix for natural mode and buckling load equation

B' symmetrical matrix for natural mode and buckling load equation

b instantaneous set

C constant

C symmetrical matrix for natural mode and buckling load equation

Cm initial misalignment of arch supports (in.)

c parameter used in the equations for natural modes and buckling loads

cc critical damping coefficient

c external damping coefficiente

Cu, c1  distances from neutral axis to upper and lower flanges (in.)

D (x) dynamic amplification factor for simplified ana!ysis

d depth of arch cross section

E modulus of elasticity (psi)

inelastic modulus of material (psi)

E1 second modulus of material (psi)

E 2 third modulus o! material (psi)

EAj extensional stiffness parameter of joint j (Ib)
j2

Elj flexural stiffness parameter of joint j (lb-in.2
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e strain (in. /in.)

F external force (lb)

f stress (psi)

fn natural frequency of vibration (cps)

f yield stress (psi)Y

H horizontal redundant reaction (lb)

k parameter used in the equations for natural modes and buckling loads

k spring constant of elastic support (in./lb)

L length of bars for the discrete framework (in.)

Lo span of the arch (in.)

M bending moment at joint j (in. -lb)

M plastic moment (in. -lb)P

In m mass of joint j (lb-sec2 /in. 2)

N i axial force due to the deformation of bar j (lb)

n number of bars for the discrete framework (in.)

n a constant used in the simplified analysis

Pix' Pjy x, y components of external forces acting at joint j (lb)

P A' PJy x, y components of internal forces at joint j (lb)

PJr' Pit radial and tangential forces at joint j (lb)

p pressure (psi)

R radius of the arch (in.)

R1 reaction 1, etc. (lb)

Tn natural period (msec/cycle)

T(x) natural periods used in the simplified analysis (maec/cycle)

t time (sec) I
to duration of dynamic load (sec)

WE total external work (in. -lb)

W total internal work (in. -lb)It

Wjr, W' t external resultant forces at joint j in radial and tangential directions (lb)

w uniform load (lb/in.)
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Wcr buckling load used in the simplified analysis (lb/in.)

Z plastic section modulus (in. 3 )

Zjr* ZJt internal resultant forces at joint j in radial and tangential directions (Ib)

1 angle between radii of support and a point on the arch (rad)

e angle between radial of a support and x axis (rad)

P coefficient of numerical integration

Y maximum shearing stress in the web

a logarithmic decrement

.3 deformation of bar j (in.)

.3 first-order approximation of d (in.)

A deflection (in.)

Ajx A,,y x, y components of displacement at joint j (in.)

A ,AIt radial and tangential displacements at joint j (in.)jr'
At time increment (sec)

a angular change, elastic weight at joint j (rad)

a first order approximation of j (rad)
j

0j, inelastic angular change at joint j (rad)

A, parameter used in the equations for natural modes and buckling loads

Jp mass per unit length of the arch (lb-sec 2/in. 3)

v damping factor

V9 damping factor associated with "breathing" mode of vibration

p parameter used in the equations for natural modes and buckling loads

1, 2 principal stresses 1 and 2

00 central angle of the arch (rad or deg)

central angle subtended by bar j (rad)

angle of principal axes with respect to strain rosette

1 angular rotation (rad)

•j angular rotation of bar j (rad)

•t first order approximation of @j (rad)

circular frequency of vibration (rad/sec)
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Appendix A

MEASUREMENTS OF PRESSURE, DEFLECTION, AND STRAIN

Table A-1. Static Test Data for Antisymmetrically Loaded Arch AH-1, Test No. 2

Deflec-
Load tion Strain, e Win..'in.) Reaction (Il)V, Yl

(lb/in.) (in.) SG-I SG-2 SG-3 SG-4 SG-5 SG-6 SG-7 SG-8 SG-9 RI R2

0 0 0 0 0 0 0 0 0 0 0 0 0

243 0.27 -440 90 320 690 -40 -50 -70 -60 250 12,270 4,810

486 0.58 -860 180 620 1,370 -70 -110 -150 -140 510 24.310 9,620

568 0.67 -1,000 220 760 1,610 -70 -130 -180 -170 630 28,100 11.110

609 0.76 -1,090 290 880 1,900 -70 -140 -200 -180 660 29,440 11,940

633 0.81 -1,140 360 1,000 2.140 -70 -140 -200 -200 700 30,330 12,270

649 0.85 -1,190 400 1,080 2,310 -70 -150 -210 -200 720 31,000 12,600

665 0.90 -1,230 460 1.180 2.530 -70 -150 -220 -210 740 31,900 12,770

682 0.94 -1,270 500 1.280 2,710 -70 -160 -230 -220 770 32,560 13,100

698 0.98 -1,320 560 1.380 2.940 -70 -160 -240 -230 800 33,230 13,260

714 1.07 -1,360 640 1.510 3,230 -60 -170 -250 -240 830 34,120 13,430

730 1.07 -1,450 710 1,720 3,530 -60 -170 -260 -250 850 34.790 13.760

746 1.12 -1,510 780 1,800 3,790 -60 -180 -270 -260 880 35,460 13,930

763 1.21 -1,560 890 1.990 4,180 -50 -180 -290 -270 910 36,130 14,090

771 1.25 -1.620 950 2.060 4.350 -50 -190 -290 -280 950 36,800 14, 260

787 1.34 -1.720 1,120 2.380 5,000 -50 -190 -300 -300 1,000 37,470 14.420

791 1.39 -1,760 1,170 2,460 5,190 -50 -190 -310 -300 1,020 37,470 14,420

perm 0.40 -340 830 390 2,840 -40 -20 -70 -40 10 340 500

Load Deflec- Strain e (yin. /in.) Reaction (1b)
tion ___

b/in Y2 SG-10 S-11 SG-12 SG-13 SG-14 SG-I5 SG-16 SG-17 SG-18 R3 R4( I / n ) ( i n . )

0 0 0 0 0 0 0 0 0 0 0 0 0

243 0.27 -180 -370 -670 160 -80 -220 -260 -90 200 4,490 10,730

486 n.58 -370 -740 -1,350 340 -150 -440 -540 -180 390 9,430 21,020

568 0.67 -440 -860 -1,570 390 -150 -520 -640 -200 490 11,180 24,970

609 0.76 -480 -946 -1,710 430 -180 -560 -670 -220 500 11,620 25,840

633 0.81 -500 -1,000 -1,800 450 -180 -590 -700 -220 530 12,170 26,940

649 0.85 -540 -1,040 -1.880 470 -180 -610 -710 -220 560 12,490 27,810

665 0.90 -550 -1,090 -1,960 49" -180 -630 -720 -230 580 12,820 28,250

682 0.94 -580 -1,140 -2,060 510 -180 -650 -720 -230 600 13,260 29,130

698 0.98 -640 -1,200 -2,160 530 -1&0 -670 -730 -240 600 13,590 29,780

714 1.07 -660 1,250 -2,250 560 -190 1690 -780 -240 "10 .1,140 30,4

730 1.07 j -700 -1,350 -2,410 580 -190 -720 -800 -240 630 14,580 31,100

746 1.12 -830 -1,440 -2.550 600 -190 -750 -830 -250 660 14,800 31,540

763 1.21 -860 -1,540 -2,720 620 -190 -770 -830 -250 680 15,670 32, 630

771 1.25 -920 -1,620 -2,880 630 -190 -790 -850 -260 690 ... ...

787 1.34 -1,010 -1,830 43.210 670 -160 -820 -870 -260 710 -. ..

791 1.39 -1,060 -1,900 -3,320 680 -160 -830 -850 -250 720

perm 0.40 -360 -650 -1,060 120 -100 _._go [ 40
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Table A-2. Summary of Static Data for Arch AH-I, Test No. 2

Load SG-5 SG-8 Moment Direct

(lb/in.) (uin. /in.) (C in. /in. (in. -kips) Force.,(kips)

243 -40 -60 -2.75 7.76
486 -10 -140 -7.60 16.00
568 -70 -170 -10. 20 18.90
609 -70 -180 -11.50 19.30
633 -70 -200 -12.60 19.90

SG-1 SG-4

243 -440 690 114.00 13.00
486 -860 1,370 227.00 24.70
568 -1,000 1,610 265.00 27.90

SG-9 SG-12

243 250 -670 -03.20 8.18
486 510 -1,350 -190.00 15.90
568 630 -1,570 -224.00 14.50
609 660 -1,700 -241.00 18.40

Load Principal Stress Phi Max Shear Rad Shear
(lb/in.) a (ksi) o2 (ksi) (rad) Stress (kips)1 2(ks0 •

243 2.91 -5.20 -0.117 4.05 -3.79
486 6.30 -10.31 -0.126 8.31 -7.80
568 7.20 -12.19 -0.1128 9.70 -9.18
609 7.94 -12.90 -0. 118 10.40 -9.83
633 8.30 -13.60 -0.105 11.00 -10.40
649 8.77 -13.84 -0.104 11.30 -10.80
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Table A-5. Summary of Dynamic Test Data of Antisymmetrically Loaded Arches

Arch Test Peak Load Maximum Maximum Reaction- (1b)No. No. w Deflection Horizontal Vertical Horizontal Vertical AccelerationNo. No. (lb/in.) (in.) 1 2 3 4

AH-2 7 116 0.22 14,700 5,010 6,450 11,050 108

8 235 0.38 23,460 10,470 9,680 19,890 677

9 322 0.48 33,220 12,270 10,690 20,420 254

10 338 0.51 17,420 10,320 13,100 20,240 224

11 411 0.73 34,030 16,190 15,830 29,840 255

12 780 1.44 78,410 11,970 19,110 43,220 225

13 618 1.09 83,820 16,750 --- 41,160 269

AH-3 14 ---... .--- -- -

15 -.----

16 --- --- --- --- --- --- ---

17 474 0.99 54,630 16,180 15,810 40,090 214

18 636 1.22 57,880 12,890 26,360 41,960 263

19 ---.--- ---..........

20 700 2.83 54,110 18,580 26,610 46,780 248

21 780 2.10 51,590 31,850 19,960 48,110 ---

22 101 --- 9,730 5,500 6,250 6,180

23 728 2.28 68,600 18,220 23,950 49,460

AH-4 24 206 0.38 21,380 9,980 11,530 18,980 174

25 613 1.18 57,390 19,960 26,610 43,660 266

26 664 1.34 55,700 20,350 24,180 48,950 357
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Table A-6. Summary of Maximum Dynamic Data for Arch AH-2

DirectLoad SG- SG-4 Moment
(lb/in.) (pin. AiL.) (pin./in.) (in. -kips) Force

(kips)

116 -460 810 129.0 8.29
235 -800 1,430 227.0 14.10
411 -1,480 2,510 406.0 34.50

SG-5 SG-8

116 -170 -380 -20.8 42.60
235 -270 -460 -18.5 59.00
411 -470 -800 -33.8 103.00

SG-9 SG-12

116 370 -760 -116.0 -0.55
235 590 -1,260 -189.0 -1.71
411 1, 140 -2,200 -340.0 -10.20

Load Principal Stress Phi Max Shear Rad Shear

(lb/in.) a1 (ksi) 02 (kai) (rad) Stress (kips)(kel) 62(ksi)

116 4.63 -10.20 -0.238 7.44 -6.15
235 8.64 -17.20 -0.243 12.90 -10.90
411 17.20 -26.00 -0.255 21.60 -19.40
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800 ''SG-12

SG-12, second loading plotted to
lower scale

- 0 -2

0

200

102 4 6 8 10 12 14
0 -2 -4 -6 -8 -10 -12 -14

Strain (1,000 /zn./in.)

Figure A-1. Accumulative strains, SG-9 and SG-12. of
antisymmetrically loaded arch AH-1.
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Strain (,LOO lAin./in.)

Figure A-,. Accumulative static strains, SG-I and SG-4, of
antisymmetrically loaded arch AH-1.
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Figure A-3. Maximum values of experimental moment and direct force for
dynamically lcaded arch AH-2.
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Appendix B

STATIC ANALYSIS OF TWO-HINGED CIRCULAR ARCH

General

The static analysis of the two-hinged circular arch with a uniform load, w, distributed
over one-half the span (Figure B-i), includes theoretical solutions in both the elastic and
inelastic ranges. To simplify the numerical solution, an idealized arch (Figure B-2) is
taken along the centerline of the actual arch. The elastic characteristics are represented
by the flexible joints connected by rigid bars. 13 This substitute framework is shown in
Figure B-3.

Elastic Range

In determiirning the theoretical behavior of the circular arch in the elastic range, the
following assumptions were made:

a. A linear distribution of stress and strain is maintained at any cross section of
the entire arch.

b. The arch cross sections are uniform between any two adjacent joints.

c. Segments of the arch are assumed to be straight.

d. Continuity of the arch is maintained in the elastic range.

R

3.53.50RR

3. T 3.5050

Figure B-1. Gec.itetry and loading condition of the circular arch.
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Wy (Ib/in.)

- I/
cn

R3 R
X -a-

R 4

Figure B-2. Coordinate system and loading condition for static analysis of the circular arch.

e. The applied ioads are assumed uniform between any two adjacent joints and can be

represented by components of concentrated loads.

f. Rotations due to elastic strain take place at the joint.

g. The elastic support is represented by a linear spring.

h. The effect of dead load is negligible.

Assumption g is due to the horizontal movement of the right support during the static
tests. The horizontal permanent displacements recorded were 1.'16 inch. It is believed
that the elastic displacement during the test was larger. The elastic constant was taken to
be 6. 25 x 10.-6 in. lb in the static analysis.

The two-hinged arch considered is a statically indeterminate structure with a
redundant reaction. If the horizontal restraint at n is removed, the structure becomes
readily solvable by the principles of statics. The deformed structure is shown in Figure B-4.
The simulated structure, obtained by the addition of the redundani. reaction, H. is shown in
Figure B-5. By applying the principle of superposition, the magnitude of H is obtained for
the nonyielding support by equating the horizontal deflection at n (dx" in Figure B-5) to
the deflection Ax' in Figure B-4. For structures with yielding supports, special boundary
conditions must be satisfied.

The slope-deflection relationship of a segment of the arch may be expressed by the
moment-area method.
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n

Figure B-3. Discrete framework of the arch.

w (lb/in.)

d'€eflected arch

0

Figure B-4. Deflection of the statically determinate base structure.
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HIni

0

Figure B-5. Original arch simulated by addition of rcdundant reaction H.

For the entire arch, the origin of the coordinate system is taken at the left support
of the arch as shown in Figure B-2. Note that the x and y axes coincide with the direction
of reactions, R 3 and R4, respectively. By trigonometry, the coordina~es of any joint j on
the arch may be established as follows:

S= R [cos (1- cos a) - sin.$8 sins] (B-i)

= R [sia n sin (cc- #)] (B-2)

where .8 is the initial angle between the radial line of the arch at point 0 and the horizontal
axis. Because of symmetry at the crown of the arch

f (A2 - 2(B-3)

where 0. is the central angle of the arch.
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Consider a discrete system with a finite number of joints connected by straight bars.
Let the angle between radii to two adjacent joirnts be 0 and the central angle of the arch be
460; then

"0
n

where n is the number of bars used in the discrete system. The bar length is

L = 2R sin 2 (B-4)

The x and y components of the bar connecting joints j and i are

Xjx = x -xi (B-5)

jy = Yj " Yi

where joint i is the joint j-l.

Proceeding on the assumption that the applied loads are uniformly distributed along each
segment of the arch, it is convenient to resolve the distributed loads into x and y components
of a concentrated load acting at the centroid of the segment. If the segment is sufficiently
small to warrant the assumption of the member being straight for the segment, the uniform
load, w, may be resolved into components as follows:

x= Wyjy (B-7)

and

y= Wx. (B-8)

The conditions of equilibrium require that

n

Pnx + ox + Wyjy = 0 (B-9)
j = o

n
Pny + Poy WX.jx 0 (B-1)
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and

Mn = M + ;oxYn + PoyXn ÷ Pjx n" Yj + PjYkn - xj 4
j=o/

= Mo + PoxYn + PoyXn + 4 w[Y y(Yn - Yj + I + Xj Jx(xn - xj +..j (B-1i)
j=o

where the subscripts o and n denote beginning and ending points of the free body considered
for equilibrium. It 'a important to note that point j can be an ending point as well. A review
of the statically determinate structure of Figure B-4 indicates that the x component of
reaction n is zero.

P =0nx

n

Pox Wyjy = 0 (B- 12)
J=o

or

n
P = " E wyjy (B-13)

j=o

The summation of moments at joint. 0 is zero.

n
PnyXn + • w(yjyjy + xixjx) = 0

j=o

n
_ny 1 1 w(yjyjy +xj xjx) (B-14)

n j=o

oumming up all forces iUi the y direction, we obtain

Poy = -Pny - E wxjX (B-15)
j=o

Substituting Equations B-13 and B-15 into Equation B-11, the bending moment at any joint
can be calculated.
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Consider an arbitrary moment distribution in the vicinity of joint j as Siown in
Figure B-6, and subdivide the moment diagram into a number of triangular p:'tcnas. The
segment size is chosen so that the variation of moment can be adequately approrimated by
straight lines between adjacent joints. The bending moments tributary to joint : can be
represented by the triangle abc and the area of the triangle is

M L
=j - E (B-16)

where Gj denotes angular change at j due to elastic strain between dg. The areas abc and
defg are equivalent, and M /E I can be taken as the average elastic weight between d and g.

For small angular chLnges, the relative displacement of joint ' with respect to any
point A, shown in Figure B-7, may be expressed in component terms as follows: 14

M. L
y x == E--xX

i j EI 'j

MLAx = Y j= -4i Yj

=j

M \ b

\I
\r

A I If

Figure B-6. Moment at the vicinity of joint j.
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Y

7- AX(, y)

Ay I

Lnk A' (x, y)

x

Figure B-7. Joint rotation due to ela -ti. strains.

Summing from 0 to n and adding the initial displac~ment terms, the x- and
y-components of final displacement become

SM.L
any = Aoy + %o n +*r~l xi x..

rMI = "O o Yn + '.,,.dr M'I )(-18)

A~ ox +0 +S i (B-)
1=0

It should be noted that M1 may be obtained from E-uation B-11 by substituting j for n.
To maintain contin ity, the sum of total angular changes betw-.en 0 and n must be

equal to zero and Equations B-17 and B-18 must be satisfied. Thi3 results in

l M L

I

83o
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For the structure shown in Figure B-4, Any = Aoy = 0. It follows from Equation B-17

that

o = _ . XJ (B-20)So xnJ=o

Substituting Equation B-20 into B-18 and noting that Aox = 0

n M• L ML
Sd~nx = x~n, E EIj Xj ElYJ

n j=o J =o EI

By symmetry

Yn
x Xn

The above equation is then reduced to

nM L

y xj) = 4 ' (B-21)
j=o

This equation gives the horizontal displacement of the statically determinate arch shown
in Figure B-4.

In order for this arch to act as a two-hinged arch, the horizontal restraining force, H,
must be provided as shown in Figure B-5. For simplicity of presentation, let H be unity.

The equilibrium in the x direction requires that

o ="P = 1 (B-22)

Taking moments about point 0 and noting the geometric symmetry and equilibrium condition
in the y direction, it is clear that

P oy = -Pny = 1 (B-23)

Substituting Equations B-22 and B-23 into Equation B-11 for new bending moment terms

M.=y. -x. (B-24)
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Substituting Equation B-24 into Equation B-21 for horizontal displacement in the direction of
the unit load at n, and introducing the redundant reaction, H

A -H Z j -(yjx 1 ) (B-25)
3=0 i

In the case of a nonyielding support

A ' + A = 0 (B-26)
x x

By substituting Equations B-21 and B-25 into Equation B-26, one obtains the following
expression for the redundant, H

n M.
H (B-27)

For elastic support represented by a linear spring with constant k in the direction of H

lxt + Ax" = kH (B-28)

therefore

E~j L(Yj_ xj)

H j --o (B-29)n

k+ E L -

j=o I

Note that Equation B-27 is a special case of Equation B-29 with k = 0.
Once the redundant, H, is known, the two-hinged arch can be solved as a statically

determinate structure as outlined above.
The bending moment and the x- and y-components of forces at each joint can be

calculated by Equations B-9, B-10, and B-I1. It is desirable to convert the x- and
y-components of the forces at each joint into radial and tangential forces as follows:

P.jr Pjx cos (a - + P jysin(c c (B-30)

Pjt= PjyCos(a -f) - Pjxsln(a -P) (B-31)
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"where PJr and Pit are the radial and tangential forces at the joint J, generally known as
radial shear and direct forces in the arch.

The stress and strain of upper and lower fibers at each section can be calculated from
the bending moment and direct forces of Equations B-l1 and B-13. The expressions for
strains, eu and ej, for the upper fiber and the lower fiber are ,,s follows:

,eu .u- (B-32)

P ~ M c (B-33)

where cu and c1 are distances from the neutral axis to the upper and lower fibers,
respectively. The stresses fu and f1 for the upper and the lower fibers may be expressed
in terms of strains as follows:

fu •e Eu (B-34)

SfI = e. E. (B-35)

where Eu and El are the elastic moduli of the upper and lower fibers, respectively.
The x- and y-components of deflection can be obtained from Equations B-21 and B-22

and can be converted into radial and tangential components, Air and Ajt, as follows:

Ajr = jX Cos (a -) + A jysin (a - ) (B-36)

A = A jycos (a -. 8) - Ajx sill( -( ) (B-37)

Secondary bending moments are produced by direct forces acting on the radial displacements,
Ajt, and initial misalignment of the arch. The secondary stresses are ordinarily neglected
in structural analysis; however, in this arch analysis they are quite significant.

Mil = r (t + C) (B-38)jt (.jt M)e

Mil denotes the secondary bending, and Cm is the initial misalignment. It is evident that
the deflections, stresses, and strains are amplified by Mj' as follows:

- ~M + M.

A. = (,3-39)Im M
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The amplification factor, Ajm, should be used as a coefficient in Equations B-36, B-37,
B-11, B-32, B-33, B-34, and B-35 for the final deflecLions, moment, strains, and stresses
at each joint.

Inelastic Range

The procedures described in the elastic range may be extended to cover the inelastic
range by introducing the variable inelastic modulus, E', when the stress in the section
exceeds the yield stress. Equation B-16 becomes

M L
oil =(B-40)

The solutions can be obtained by small increments of stress at each joint. When the yield
stress is reached, the inelastic modulus becomes effective at that joint. The forces,
moment, stresses, strains, and deflections are calculated at the point by the equations
shown in the elastic program. The stress increments can continue until the ultimate stress
is reached.

For each change of slope in the stress-strain curve, a corresponding yield stress is
given. Since the strain-hardening materials do not have a definite plastic range, it becomes
necessary to represent the stress-strain curve by a series of lines (more than two). Figure
B-8 shows the idealized stress-strain curve for the circular arch tested. The variable
inelastic modulus, E', is represented by E1 and E2 in this case.

100

80__

E2

point of second yield•'•El- f2 58, 000 psiy2
point of yield

40 f 44, 000 ps

y4

E-/
, /E, 0.4 E

20 7 E 2 "0.08 E 06ps
/ ~E -"27x I0ps

Fl f , SO)5 psi

0 0.001 0.002 0.003 0.004 0.005 0.006

Strain, e (in./in.)

Figure B-8. Idealized stress-strain curve for static analysis.
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Computer Programs

Computer programs (B-I and B-2) were used for the analysis of the circular arch for
the elastic and inelastic ranges. The programs follow the theoretical derivation of equations
given in this appendix. The source programs are written in FORTRAN language and can be
carried out on an IBM 1620 or IBM 162011 computer. A flow chart showing the sequence of
operations of Program B-1 is given in Figure B-9. Program B-2 is relatively simple, aud
no flow chart is needed. The input specifications for the programs are as follows:

Number of bars: variable but subject to the limitations of the computer
memory system

Stiffness parameters: can be varied from joint to joint

Elastic support constant: variable

Loading: uniformly distributed over any portion of the arch

Presentation of Numerical Results

The static properties for materials used in the arches are given in Table 2. Due to the
strain-hardening properties of some specimens, particularly the bottom flanges, the
idealized stress-strain relationship is represented by the trilinear curve of Figure B-8

* instead of by the usual bilinear stress-strain curve.
The average elastic modulus of 27 x 106 psi was used; the inelastic moduli, E 1 and

E2, were 0. 4E and 0. 08E, respectively. The average ultimate stress for the bottom flange
was 72, 500 psi. Other input parameters for static analysis of the arch were as follows:

Number of bars n = 16

Angle of segments = 0. 1..8 2 radian

Offset angle = 0.06117 radian

Radius of arch R = 96.0 in.

Stiffness parameter E I = 407. 1 x 106 lb-in. 2

Stiffness parameter EA = 177. 4 x 106 lb

E of top flange Eu 27.9x106 psi

E of bottom flang: Ef = 26. 7 x 106 psi

Initial misalignment Cm = 0. 0195 in.

Elastic support constant k = 6.25 x 10-6 in. /lb

Upper fiber from neutral axis cu = 1.29 in.

Lower fiber from neutral axis cl = 2.71 in.

Loading was considered uniformly distributed over one-half the arch length. The
ma.gnitudes of the uniform loads used In the analyses were increased by increments of
100 lb/in, from zero to 500 lb/in. The yield stress of 44, 000 psi was first reached in the
bottom flange at the 1/4-point of the arch, where the stresses caused by axial force and
flexure were of the same sign; the load causing this yielding was 507 lb/in. At a load of
545 lb/in., the yield stress was developed In the bottom flange at the 3/4-point. Higher
loads of 680 and 704 lb/In, produced stresses of 58, 000 psi (point B in Figure B-8) in
the bottom flanges at the 1/4-point and 3/4-point, respectively.
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Program B-1. Analysis of the Statically Loaded Arch, Part I

C ANALYSIS OF ARCHES LiY VIRTUAL WORK METHOD
C PROGRAMED / RICHARO~ He CHIU / MARCH 1965

DIMENSION XI(i? .SM(l7.oEWE17,*X(I7),Y(17,tXXulhYYul7,,oWtl7,
DIMENSION DRX(17iDRYII7) ,FXMI17I ,Til?'STItl.2)

1 FORMATCI'.,6F12*6,I'.I
2 FORMAT(1395F15e4)
3 FORMAT(13,5F15.8i

C 4 FORMAT(/6H JOINT7X1HA14XlHXJ'.XlHYl.X2HXX13X2HYY/I
C S FORMAT(/6H JOINT7X2HXWl3X2HYWlzX3MSXW12X3HSYW12X2NXMjI
C 6 FORMAT(/6H JOINT6X4HE*W*lZJX'.H SFWl2X4HDFFX/)
C 7 FORMAT(/6Ii JOINT7XH1NXl~xHV12X'SHEW(1)12X3HSYM133ZHMX/I

8 FORMAT 46'IJUINT 7XlHIHi4XItVI4X1H514X1HT13Y4HMII3)
10 FORP4ATI/6HJOINT 6X2HDX13X2ý4DY13X2HOR13Xg.4T1OX6H-FXM(I)/I

102 FORMAT (6HJOINT 6X2HFT13x2HII13IX2HST13x2HSb)
100 READ 1,NLIA*6*RvCSA9EC9SPRCoN1

READ lo N3%DWCIC29EtE1
C GEOMETRY OF CIRCULAR ARCH4

9REAU1,N?,XIII),XI(I,1),Xz(l,2, ,XII +3;.XI( I'4,oXII+5)
00 110 I&1,N

110 W(1120.

Y(l)SO.

YYI11ju.
C ESTAbLISH THE COORDINATES OF JOINTS 1 THRU N

11 AuDA
AMMO.

C PUNCH 4
13 DO 14 Iw2sN

X(I~uR.(COSibl*Io(1.COScA,)-SlNiA,*SlNgB)I
Y(IhIR4ISIN(B)+SIN1A-BI)

C SECTIONAL COMPONENTS IN X AND Y DIRECTIONS
15 XX(I-x4I)i-xu-1?

YY (I*Y (II-Y (1-li
C PUNCH 2. !.AvX(IflYII),XXCI),YY(I,

14 AaA+DA
C X AND Y COMPONENTS OF THE APPLIED LOACS
C MOMENTS ABOUT 0
C PUNCH 5

DO 19 .J=19N1
SXW=0O.
SYW=0*
DO 16 I.N3vN

16 UNC 2.IXW.YXWSWl

RSX=O.W+X

SYM=O.+Y

16 Continued

~~~~U C 29 - .--- -------.f N' -.- v)



Program B-1. Analysis of the Statically Loaded Arch, Part I (Contd)

C MCMENT AT SECTION X
C ACCUMULATIVE AREA OF THE MOMENT DIAGRAM

DSuReDAEE*xi(li))
IF(K-21 118,117,117

117 XMuXM,-YYEII)*EO-Wifl#YYEI,,'2.3.XXEI)*EVO-WE II'XXEI)/2.)
G0 TO 119

lie XM a XE fl-Y1I
119 EW(I1=XM*DS

SMXaSFVX4EWI I
SYMwSYm+EwEI)%xE I)
IF(K-2) 2091219121

121 HO=MO-W(1H*YY(IH
VOBVO-WE I)'XXE I)
IF(K~-2) 20v20917

17 AzA+DA
DRX( I )z-iO*X)C I)/(CSA*E)
RSXaRSX+ORX( I)

a ORY41)8-VO*YyEI)/(CSA*E)
RSY=RSY4ORYE I)
RR-HO*COS(A3.VO*SIN( A
RTýVO*COS(AL-H-O*SIN A)
T (I) aRT
FXM( I )XM

* ~STE I91)uRT*'C$A+XM*C1/XIE Ii
ST (1923aRT/CSA-XM*C2/X 1(11

25 PUNCH 2. I9HO9VOtRR9RT*XM
* C GO TO 20

C 18 PUNCH 2. IHOqVO9EW(IvSN'MqXM
20 CONTINUE

131 EW(N)=-SYM/XINI
EWE 1)3-EEW(N34SMX)
SXMUO.
SEW-EWE 13

C PUNCH 6
C PUNCH 39 N29EWE1)95E~qSXN;

DO 24 Iz2vN

SXM=SXM+SE4d*y'( I)
C PUNCH 39 I9E4(1ISfWqSxA4

24 SEW=SEW+EWfl)
IFEK-2) 229219141

C DEFLECTION OF THE ARCH
141 A=-R

PUNCH 1J.'2
DO 26 ;u9
STT-STE1,1s)/f
5TU=5T(El 2) dEl

26 PUNCH 3, I*STEI911),'TEI*2)*STT*5Tb
DX=3.
nv=Iq.
6FWzEw(1)
ROX*-RSX/Y (Ni
ROY u-RSY/X EN
PUNCH 10,
DO 23 Ia?9N
DXzDXSF%.YyI I)4ROX*YY( I .tRXE U
DYNDY+SEW*XXE I .ROY*XX(1I +O7RY Ii
SEW..SEW.EwI I)
AxaA CiA
DRaDX*COS (A) .DY*S IK( EA
0T=OYeCOS1A)-L'X*5,IN Aj

C EFFECTS UF S1Rý55 AMPLIFICAT ION

AMPFaFXMEI),EFX4i(l)+T(I)*(E)R-CCI)
FXM41h.FXMEI)*AY.PF/lI.C,
IF (AMPF-0.53 1429142ol4l

71 Continued



Pri.gram B-i. Analysis of the Statically Loaded Arch, Part I (Contd)

142 Ar)X*)X
ADYzDY

Go TO 23
143 AUXUDX*AMPF

ADYz=DY *AMPF
OiimOR*AMPF
'nTttT*AMPF

23 PUNCH It I9ADX*AnY9DP9flT9FXMt~()
GO TO 19

C EFFECTS OF HORIZONTAL ELASTIC SUPPORT
21 XRz(SxM*5PRC/SXMI-SXM)/SXM1

HO=SXW-XR
VO=XR+V04SYW
PUNCH 8

r AXIAL AND) SHFAR STRFSSES 1N TH~E ARCH
133 RR=HO*COS(B,-VO*5TN(B8

RTzHO*S!N(b ) VU*COS~( S)

XM~.G
PUNCH *, N2,H09VORR*RTqX1.i
GO TO 19

22 SXM11=SXM
C PUNCH 7

19 CONTINUF
IF(SENSF SWITCH 1)ID09lO101

101 PAUSE
E ND

72



Program B-2. Analysis of the Statically Loaded Arch, Part HI

DIMENSION X(9vI7)*SXE 999) R(d.)*!SR(4j
I FORMAT (3Xs4FI598)
2 FORM4AT (33X93FI5.81
3 FORMAT (I'.,2F8vUv3F9e0,2F8*U*2F8.4)
4 FORMAT (3X*4Fl5e8/)
5 FORMAT ( //3Xi
6 FORMAT (/4H. BAR,5X.1MW,6X,4HR(1,.4X.4HR(2;,SX,4HR(31,5X,4HR(4),
14X95HVISR)/)

7 FORMAT (/4H JT.,2X96HDIR* F,3X,5HM6HLAR.3X,6H-MOMENT,7X,8HSTRESSEs,
IlOX ,7HSTRA INS. aX, l0HtEEFLECT ION)

8 FORMAT (4H NO.s3X,'a1.(L831s5X.41(Lbis9H (IN-LBI,3A96HT(PSI)1,3X,
l6HB(PSI),17H T IN/IN b IN/1N92X*5HR(IN),3A95H''INI)/

9 FORMAT (3Xs F15.8/1
DO III Jz.99

111 111 1J109

DO 112 1=1*4
112 SR(11=O.

100 READ 3, M9C59C139S
READ 9oW
RFAD 1,Q(3)%R(4),X(2,l) ,X(I9I)
DO 11 J=2916,

11 READ 29X(29J1.X(1,J)
READ 4,R(1) .R(2),X42qI7)sX(I9I7)
VzX(2,1I)+.763*(X(2s2)-XC2,1I2
DO 12 7=1.4

12 R(I)=ABS(R(I))
DO 21 jz294

21 READ 1s X(4.J).X(5*J)sX(69J),X(79J)
READ 1# X(495'i.X(5,5)*X(6s5)9X4795)
X (4p5)zX (4,5 )*C5
X (5 .5)-X( 595)*C5
DO 22 Jz6912

22 READ 1s X(49J)sX(5,JsX(69J)9X(7,.J)
READ 1t X(4,13),X(59131,X(bsI31 ,X17v13)

X (4913)=X (4.13) *C 13
DO 23 J=14o17

23 READ 1s X149J).X(5*J),X(6,J)*X17sJ1
DO 24 1=4,7
DO 25 j=2917

25 X(IJ2=-X(I*Jl

READ 5
DO 31 1=6,0

31 X(I,1)zO.
X(3sl)0.*
DO 32 J=2917

32 READ 2. X(8,J)9X(99j)vX139J)
DO 42 j=1,17
DO 41 1=697

41 X(isJ!=X( 1sJ)*i.0E+6
4? X 13*J)zX43,J1*!.0E+1

GO TO (45931952)914
45 SW=W

SVUv
DO 44 1-1,4

44 SR(I=rRUI)

D0 43 jx1.9
DO 43 1:.99
K a 142. IJ-1)

43 SX(I,4 )=X(1,K)
GO TO 60
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Program B-2. kialysis of the Statically Loaded Arch, Part II (Contd)

3- GOTO 53
52 FACnIS-SX(597 I)/XI59133
53 WaFACew

VaFAC*V
DO 54. 1.1,4

54. R(I)ORfII*FAC

DO 55 .Ja1917
00 55 1=109

55 X119JI*X([tJ)*FAC
SW. SW+w
SvRSv+v
DO 57 1-194

57 SR(1)sSR(1)+R(l)
00 56 j=199
DO 56 1..99
K.1e2*(J-1i

56 SX(1,J)aSX(1,JIX(IsKI.
60 NJzUJ-2.*2

PUNCH 6
PUNCH 39 NJ, W, R(1), R(2)9 R(319 R44)9V
PUNCH 7
PUNCH 8
DO 61 J=1917
KaJ-1

61 PUNCH 3, K, X(1,J), X(29J19 X(39J)o A14,JI9 X(59J), X(69J)sI 1 X(79JIt X(8#J)* X(9J)
PUNCH 6
NJ&NJ/2
PUNCH 3, NJSW.SR(1,,SR(2,.bR(3),SRI44jSV
PUNCH 7
PUNCH 8
DO 62 J.,99
K.tJ-1

62 PUNCH 39 K.SXt11J),SX(2,J),SX43,J),SX(4,J)sSXI5,J),SX(6,JI,
1SX(7sJ)9SX1B9J)9SX(9%J)
IF (SEN5E SWITCH 2) 10(U,101

1C1 CALL EXIT
END
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A load of 866 lb/in, developed the ultimate stress of 72, 500 psi in the bottom flange
at the 1/4-point. At a load of 877 lb in., the bottom flange at the 3.'4-point also attained
the ultimate stress. If this load were maintained, the arch would continue to deflect until
collapse occurred.

The results of the theoretical response in the elastic and inelastic ranges are given
in Tables B-1 through B-4. Table B-1 summarizes the reactions and radial shear at strain
rosette- tl'-13-14-15. The location of the rosette is shown in Figure 6; the directions of the
reactions are shown in Figure B-i.

Table B-2 summarizes the theoretical results at the 1/4-point of the arch. At this
section the direct forces are maximum and the shearing forces are minimum for each level
of load. Maximum stress and strain values occur at this location in the bottom flange.
Positive radial deflections are in the outward direction.

Table B-3 summarizes the theoretical results at the c-rwn of the arch. The positive
shear and tangential displacements are maximum at this location. The direction of positive
tangential displacement is shown in Figure B-3.

Table B-4 summarizes the theoretical results at the 3/4-point of the arch,. The bending
moments and the radial deflections are maximum at this location; the axial and shearing
forces are small.

Table B-1. Summary of Elastic and Inelastic Reactions and
Shears of the Statically Loaded Arch

Load R(1) R(2) R(3) R(4) V(SR)*
(lb/in.) (Ib) (lb) I (lb) (lb) (Ib)

Elastic

100 4,590 2,520 1,800 4,860 -1,700

200 9,180 5,040 3,600 9,720 -3,400

300 13,800 7,560 5,400 13,580 -5,10ý

400 18, 400 10,080 7,200 19,440 -6,800

500 23,000 12,600 9,000 24,300 -8,500

507 23,300 12,800 9,120 24,600 -8,630

Inelastic

545 25, 000 13,800 9, 760 26,400 -9, 230

680 31,200 17,200 12,200 33,000 -11,600

704 32, 200 17,900 12,500 34,100 -11,900

866 39,700 21,900 15,500 42,000 -14,700

877 40P200 22,200 15,700 42,600 -14,900

*VSR) are shearing forces at strain rosette SG-13-14-15.
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Computations of direct force, shear, bending moment, stresses, strains, and
deflections were made for all joints. However, Tables B-2 through B-4 tabulate those
values for only the 1 '4-point, the crown, and the 3 4-point. The distribution of direct forces
along the arch varied from a maximum at the 14-point to a minimum at the 3 4-point (e. g.,
from 10, 400 lb to 8, 500 lb at a load of 200 lb in. ). The 1 4-point and 3 4-point had maxi-
mum bending moments and nearly zero shear. The fact that the shear was not zero at these
points indicates that the maximum bending moment does not occur exactly at either quarter
point. This would tend to provide a theoretical stiffness of the arch that is slightly higher
than it would be if a greater number of bars was considered in the theoretical solution.

A theoretical curve of load versus deflection is shown in Figure 23.

t
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Appendix C

DYNAMIC ANALYSIS OF A CIRCULAR ARCH

The dynamic response of a two-hinged circular arch subjected to dynamic load

distributed uniformly over one-half the arch length was calculated for the elastic and
inelastic ranges. A substitute discrete framework was used in the analysis, and the

L numerical results were obtained by the iterative method of numerical integration. The
* original investigation was performed under contract by Eppink (References 15, 16, and 17).

Variations and additional comments were made primarily for clarity and continuity of this
report.

Analogous Framework

As pointed out in the static analysis of the circular arch of Figure B-i, the exact
solution of the continuous arch with distributed mass is impracticable. This is even more
so in the dynamic analysis of the circular arch. In order to simplify the solution, it is
desirable to represent the original continuous arch by a discrete framework consisting of
a series of rigid bars and flexible joints. The following assumptions are made regarding
the analogous framework in the elastic range:

1. The rigid bars are assumed to be massless and straight.

2. The flexible joints have the elastic properties of the arch section included between
the midpoints of the adjoining segments.

3. The distributed mass of the segment is lumped intc. a concentrated mass at the
joint.

Due to the complexity of the stress-strain relationship in the inelastic range, further
assumptions regarding the section properties of the arch are needed:

1. The cross-sectional area of the arch is composed of two flanges and a thin web of
zero area.

2. The web is assumed to be rigid in shear but resists no axial force.

Schematic representations of the circular arch and the analogous framework are shown
in Figures C-1 and C-2, respectively. The joints of the discrete framework are numbered
consecutively from 0 at the left support to n at the right support, and the bars are numbered
from 1 to n. A subscript notation is used to identify the locations of joints along the arch.
A representative joint is designated by subscript j; joints j-2, j-1, j+l, j+2, and j+3 are
designated by h, I, k, 1, and m, respectively. The same system is also used for bars such
that bar j connects joints i and j.

The deformed arch is represented by the radial and tangential components, Ajr and
Ajt, of the displacement of the joints. All displacements are measured from the undeformed
position of the joints, and the directions of positive displacements are shown in Figure C-2.
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Figure C-1, The original arch.
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Figure C-2. The analogous framework.
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Development of Equations of Motion

The forces acting at the ends of a typical bar and joint are shown in Figure C -3. They
include the axial force, Pit; the transverse shearing force, Pjr; the bending moment, Mj;
the damping forces, Ce jt and C@hjr; and the applied force, Pj. The applied force is
expressed in terms of its components, Pit and Pjr, to the left and right of the joint J,
respectively. Summing the components 6f all internal forces in the radial direction, one
obtains the following expression for internal resulting force in the radial direction, Zir

Zi p~sin(qt0j- Pittsin (A+ k)jr i

+ jr 4OB J) PkrcO - + V'k)

where 0, denotes the rotation of bar j and Ok denotes the rotation of bar k. Considering
a small deforination such that sin 0 w k& and cos t b 1, the above equation can be written
in the followingform:

Zjr it Pkt)sin+ (Pit j - Pkt Ok) 2

(Pir - Pkr)co + (Pjr j + Pkr Ok)sin

"Similarly, the tangential component of the internal resulting force, Zit, may be
obtained by summing all the internal forces in the tangential direction as fol ows:

z =t P tcos (- 00 + PktCos(12 +0 k)

- Pjr sin(12 - j- Pkr Sin(2 + Vk)

and for a small deformation this reduces to

zt = (Pit- Pkt) os " (Pjt- j + Pkt k)sin

(Vjr "krI 2 ' Pr j kr ?kJ/ o 2 1I_..A)_.
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Figure C-3. Free body diagrams for a typical bar and joint.

The shearing forces Pjr and Pkr in the above equations are related to the bending

moments Mj, Mj, and Mk as follows:

M.-M 

M -a M

where 6j and 
0k are deformations of the bar j and bar k, respectively. The axial forces,

Pit, and shearing forces, Pjr, are taken at the center of the bars, and the bending moments,

are taken at the centers of the joints.
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The external pressure is considered to act normal to the arch surface. The distributed
lo:,d is represented by a series of concentrated forces acting at the joints. For convenience,
the concentrated forces are represented by their components, PjI and pjr, which are
positive in the outward direction. By summing the external forces in the radial direction,
one obtains the expression for the external resultant force in the radial direction, Wjr,
as follows:

W Jr = P J Cos ) p ir Co.+ ck) - j

where Ce is the coefficient of external viscous damping, and a dot superscript denotes
differentiation with respect to time. In the absence of specific information regarding the
internal damping of various types, the external damping is taken to be the total damping of
the system. The coefficient ce is obtained from experimental sources. For small displace-
ment, the above equation becomes

W J = +P P r) Cos. (P + - P ir Ok) sin. - ce jr (C-4)

Similarly, by summing the external forces in the tangential direction, one obtains
the expression for the external resultant force in the tangential direction, Wit, as follows:

it = sin( -J +( pjr)in( +( k) - Ce Ait

and for a small displacement, it becomes

W. -P P ir) sinl + (j i+ p r pk) Cos.~ Ce (C-5)

The equations of motion for mass mj in the radial and tangential directions are as
follows:

m r Z. + W (C-6)

jjr jr Jr

mj ljt =Zjt + Wit (C-7)

where Air and Ajt are the radial and tangential accelerations of the mass mi.
The schematic representation of the displacement-deformation relationships is shown

in Figure C-4, where ab and a'b' are the positions of bar j before and after deformation.
Let the projection a'c' on ab be designated by L + 6j; then 6j can be expressed in terms
of the displacements of joints I and j as follows:

= it - Ait)cos4 + (Ajr + 2ir) Sin- (C-B)
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Figure C-4. Sciematic representation of displacement-deformation relationships.

Let the projection c 'b' in the direction normal to ab be designated by L j; then

O+[At*At i - (Ajr - Air) c"s ](C9

The length of the deformed bar, a'b', can be expressed in terms of the deformation, 6j,
as follows:

L + 6. = L 2 4

The deformation of the bar j is then

;7 = L [2 ] . +{L- (C-10)

Similarly, the rotation of the bar j, Oj, can be expressed in terms of Ij and tj as follows:

0 j =tan -1 1 2-ý (1 (-1
I + I-•- j "( -

L
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"Similarly,

sin@ 0 
*____(I_

+ \W

C o s 0 j 'ý 2 2 21 +1

where 6- and ij are the first-order approximations of 6j and ipj. The angular change at
joint j, 6j, is

0. = k- (C-12)

and its first-order approximation, Op is

.j = •k- (C-13)

The geometric relationships and the equations of motion developed in the preceding
paragraphs are general; they are valid irrespective of the material properties. In order to
formulate the force-deformation relationship, distinctions between the material properties
in the elastic and inelastic ranges must be made.

Elastic Range. Taken from midpoints of the adjacent bars, the deformation to the
left and to the right of joint j can be expressed in terms of internal forces and section
properties of the joint as follows:

LP.

- 2 EAj

(C- 14)

1L Pkt
.r = 1  t

2 EAj

where E A., the extensional stiffness parameter, is the product of the elastic modulus and
cross-sec~ional area of joint j. The total deformation of bar j is expressed as follows:

j r + (C-15)
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Combining the above expression with Equation C-14 and solving for the axial force due
to elastic strain, Nj, one obtains

N = 2 EA "-I (C-16)
j EAi

In the absence of extensional damping, the total axial force, Pjt, equals Nj.
Similarly, the bending moment, Mj, is expremsed in terms of angular change, Oj,

and the flexural stiffness parameter, E rj, of joint j as follows:

E I

M = - -J- e (C-17)

Inelastic Range. In the inelastic range, the actual arch cross sections are
approximated by a section consisting of two flanges. For simplicity, the idealized bilinear
stress-strain curve of Figure C-5 is used to correlate the force-deformation relationships.
The curve is shown in dimensionless form such that the slope of the elastic portion is unity
and yielding occurs when the value of f/fy is equal to one. The slope of the inelastic portion
is El. E, the ratio of the inelastic modu us to the elastic modulus of the arch material.
Unloading is assumed to take place along a line, A B, parallel to the elastic line. The
intercept of A B on the e. ey axis is the instantaneous set, b/ey. Unloading will continue
along this line until a new "elastic" limit is reached at B. The projected length of A B on
the iertical axis is 2f/f Further unloading will occur along a line with a slope of Ei,;E.
A possible path of a loading and unloading cycle is represented by OABCD in Figure C-5.

f

I A!E

-1.0-0

?:ý ey

El

Figure C-5. Bilinear stress-deformation relationship.
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In the inelastic range, the stress-deformation relationship is rather complicated. It
becomes necessary to determine the deformations in the flanges before the stress, moment,
and axial force in each joint can be calculated. A schematic representation of the flange
deformations is shown in Figure C-6. Additional subscript notations, t and b, are intro-
duced to designate the top and bottom flanges, respectively.

Figure C-6. Schematic representation of deformed joint.

To avoid the time-consuming process of solving numerous simultaneous equations,
additional approximations are needed. The distribution of angular change to the left and to
the right of a joint is inversely proportional to the relative stiffness, E I/L, of the adjacent
bars; the distribution of axial deformation is inversely proportional to the equivalent cross-
sectional areas, E A, of two joints. Considering the arch to have uniform cross section
along its length, the deformations are given by the following equations:

= 1 + Ct

'bjb 2(i - cJbo9j)
(C-18)

6 jt =10k + cjt

6 rl(6 -

81.1
jb 16k - Cb 'j
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where cjt and cib are the distances from the neutral axis of joint j to the top and bottom
flanges, respectlvely. Equations C-18 give exact results for all deformations in the elastic
range. Specialized conditions must be used to account for the boundary condition at the
support. For hinged supports the elastic angular change, 0, is zero. The following
expressions are obtained for ioints o and n:

r r 1
ot =ob 2

(C-19)

bnt/ nb -2"

As a result of the assumptions used to obtain Equations C-18, the equilibrium
conditions at the joints can only be met by introducing the average axial forces and moments
as follows:

jit = (it + Pib p it + Pjb) (C-20)

M = 2'(Pjbf clb -Pit1 c it + P jb rc jb -V P.trc t) (C-21)

Method of Numerical Integration

Equations C-6 and C-7 may be expressed in terms of the radial and tangential
components of displacement for joints 1 through n-1 by using the relationships established
in the preceding section. The solution of the dynamic response of the arch is obtained by
satisfying a set of 2 (n-i) simultaneous nonlinear differential equations of motion. To
accomplish this, a method of iteration and numerical integration is used.

The process of iteration begins at time, tn, with known values of displacements,
velocities, and accelerations of all joints in the system and proceeds to solve for the corre-
sponding quantities for a time, tn+l, at a small time interval, At, from tn. It should be
noted that the initial values of displacements, velocities, and accelerations may be estimated
or assumed. However, good estimates will ensure a speedier convergence. A step-by-step
operation of this method will be shown in the following paragraphs. Each of the following
operations is to be repeated for the components of displacement at each joint of the system.

1. Assume or estimate a set of values of displacements, velocities, and accelerations
at a chosen time tn. For example, at initial time, to, all quantities may be taken to be
zero; at time tn the quantities may be assumed as the corresponding quantities at time tn-I.

2. Assume a function for accelerations for the rmall time interval and evaluate the
values of velocities and displacements at the end of the time interval in terms of the accelera-
tions, velocities, and displacements at the begiping of the interval. To accomplish this,
the following equations obtained from Newmark ' are used:

:i + 1 ( )5 +-1(A)5

n+1 = Xn + 2(At)3X + 2([t) (n+1
(C-22)

Xnl Xni + (At) "I +(I (A t)2 in (A /•/t)2 n+I
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where x may be taken to be either component d r or Ajt of displacement at joint J. The
dots denote differentiation with respect to time; the subscripts n and n + 1 correspond to
times tn and tn÷ 1, respectively; P depends on the assumed variation of the accelerations

Swithin the time interval, At. . is 1/6 for a linear -ariation of the accelerations.

3. Calculate 6j, Oj, and Gj of Equations C-10, C-I1, and C-13 using the values of

displacement at the end of- the time interval.

4. Evaluate Wjr and Wit of Equations C-4 and C-5 for external force components.

5. Evaluate Pit and Mj of Equations C-16 and C-17 for the elastic response of axial
force and moment at Ioint J. The corresponding quantities can be evaluated from Equations
C-20 and C-21 using information from the stress-strain curve and Equations C-18 and C-19.

6. Evaluate Pjr, Zjr, and Zjt of Equations C-3, C-1, and C-2 for shearing force
and the components of internal forces at joint J.

7. Determine a new set of accelerations of Equations C-6 and C-7 with the results of
Wi r, Wjt, Zjr, and Zjt.

8. Compare the derived accelerations with the assumed accelerations.

9. Substitute the derived accelerations for the corresponding assumed accelerations
if the agreement is not satisfactory, and repeat steps 2 through 9. Proceed to the next time
interval when a satisfactory degree of agreement is reached, and repeat steps 1 through 9.

The above iterative procedure was intended for the dynamic arch response. However,
L a quasi-static response can also be obtained from the dynamic program by introducing a

relatively high level of damping.

Computer Program

A coiiputer program was prepared for the procedures described in the previous
section. The source program is written in ALGOL language and can be cqrried out on the
Burroughs B-5000 computer at the University of Virginia. The general . )abilities and
features of the programs are as follows:

Number of bars: variable but subject to the limitations of the computer

memory system

Stiffness parameters: can be varied from joint to joint

Support conditions: varying from fully hinged to fully fixed supports*

Loading conditions: arbitrary in distribution and magnitude. The time
variation of load is considered linear

Output quantities: axial force, bending moment, radial and tangential
components of displacement, stress, and strain

Properties of the Circular Arch and Load Function

The geometry of the two-hinged circular arch and the distribution of loads are shown

in Figure B-1. The parameters of the arch are as follows:

Radius of arch R = 96. 0 inches

Span of arch L = 143. 8 inches0

Angle of opening 0o = 97. 01 degrees

*See Reference 15 for derivations of moment-resisting supports.
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The curvature of the circular arches was obtained by the cold-roll process, and the
flanges of the 4M13 rolled section were strained beyond the yield point. The dynamic stress-
strain curves do not show the familiar yield plateau. For simplicity, the idealized dynamic
stress-strain curves for the component parts of the arch cross section are taken to be
bilinear as shown in Figure C-7.

The idealized time variation of the dynamic load is represented by a triangular decaying
function with initial peak load, Po, as shown in Figure C-8. The load duration, to, is
taken to be 1. 6 seconds for all magnitudes of the peak loads.
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Figure C-7. Idealized dynamic stress-strain relationship.
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Figure C-8. Load-time relationship.

"The cross-sectional properties of the arch in the elastic range are represented by the
stiffness parameters, E A and E 1, as follows:

6
EA = 177.4x 10 lb

E1 = 407.1x 10 lb-in.2

The cross-sectional properties of the arch in the inelastic range are more complicated;
the actual cross section is represented by two flanges. Attempts were made to provide the
closest approximations of the actual cross-sectional properties. The following set of
parameters were used:

Area of top flange At = 3. 815 in. 2

Area of bottom flange Ab = 2. 288 in. 2

Modulus of elasticity of top flange Et = 30 x 106 psi

Modulus of elasticity of bottom flange Eb = 28 x 106 psi

Yield strength of top flange fyt = 55, 300 psi

Yield strength of bottom flange fyb = 66, 500 psi

Distance between flanges d = 3.15 in.

In the absence of specific information on the damping characteristics of the arch
material, it was assumed that the external damping measured by experimental means repre-
sented the total damping of the system. An average damping factor, v, of 0. 095 was
observed from the fundamental antisymmetrical mode of the free vibration tests. In order
to conform with the damping term used in the computer program, the above damping factor
was converted to that of a complete ring oscillating at the frequency corresponding to the
"breathing" mode.
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As shown in Appendix D, the first antisymmetrical frequency of the arch was 59. 9 cps,
and the "breathing" mode frequency of a complete ring was 317. 3 cps. The equivalent
damping factor, v', was as follows:

593 (o.095) = 0.018

Presentation of Numerical Resul"

Dynamic responses of the arch in the elastic range were obtained for peak loads of
200 b./in. and 400 Wb'in. For loads above 400 lbin., the inelastic behavior of the arch was
anticipated asid the inelastic program was used. As a comparison, the load of 400 Ibmn.
was repeated in the inelastic solution. The loading was increased in increments of 100 Ib, in.
up to 700 lb/in. and then increased in 50-lb.'in. increments. A maximum dynamic load of
800 lb/in. was used in the solutions.

The results of dynamic solutions for elastic response for peak loads of 200 lb/in. and
400 lb/in. are given in Table C-I, along with the maximum values of bending moments,
axial forces, radial and tangential displacements, and the corresponding times when the
maximum values occurred. The inelastic responses for loading between 400 lb.iin. and
800 lb/in. are given in Tables C-2, C-3, and C-4. All solutions were based on a 16-bar
system; howcver, data are presented for intervals of one-eighth of the arch length. At the
maximum load of 800 lb'in., the convergence of radial and tangential displacements was
slow. The maximum displacements were not obtained at several locations of the arch as
indicated in Table C-4.

The maximum elastic and inelastic values of moments, axil' forces, and radial and
tangential displacements at the quarter points and the crown of the arch are presented in
graphic form in Figures C-9 through C-12. The bending moment curves for the quarter
points coincide with each other in the elastic range, but their signs are different. Bending
moments at the crown are comparatively low. The maximum values of axial forces do not
vary appreciably at the quarter points and at the crown of the arch, as shown in Figure C-10.
The maximum radial displacements occur at the 3/4-point and the maximum tangential
displacements occur at the crown of the arch.

The time interval within which the maximum values of various response functions are
attained is only a very small fraction of th( entire load duration. The decrease of the load
from its peak value is very small within this time interval.

The time-variant traces of moment and displacements show that the major contribution
came from the first antisymmetrical mode of vibration. This observation can be made from
the moment curves and displacement curves of Figures C-13 and C-14 for a peak load of
200 lb, in. The period of major oscillations corresponds to the period of the first antisymmet-
rical mode of the arch in free vibration. It should be noted that the influence of the third
symmetrical mode is also present, but the effects are comparatively small.

The predominant oscillation of the axial forces oc- ,rs at a frequency corresponding to
the second symmetrical mode of vibration, which is close to the "breathing" mode for a
complete ring. The time variant traces of axial forces near the crown and supports of the
arch are shown in Figurc C-15. It can be seen that the variation of axial forces along the
arch is small.

In the inelastic range, the response frequencies and modes of various functions are
modified. Increases in the natural period of the response curves are expected ad the
stiffness of the arch decreases.
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The cross-sectional properties of the arch in the elastic range are represented by the
stiffness parameters, E A and E I, as follows:

• 106
EA = 177.4xl0 lb

EI = 407.1x106 lb-in.
2

The cross-sectional properties of the arch in the inelastic range are more complicated;
the actual cross section is represented by two flanges. Attempts were made to provide the
closest approximations of the actual cross-sectional properties. The following set of
parameters were used:

Area of top flange At = 3.815 in. 2

Area of bottom flange Ab = 2. 288 in. 2

Modulus of elasticity of top flange E = 30x 106 psi

Modulus of elasticity of bottom flange Eb = 28 x 106 psi

Yield strength of top flange f = 55, 300 psi
yt

Yield strength of bottom flange fyb = 66, 500 psi

DistaLce between flanges d 3. 15 in.

In the absence of specific information on the damping characteristics of the arch
material, it was assumed that the external damping measured by experimental means repre-
sented the total damping of the system. An average damping factor, V, of 0. 095 was
observed from the fundamental antisymmetrical mode of the free vibration tests. In order
to conform with the damping term used in the computer program, the above damping factor
was converted to that of a complete ring oscillating at the frequency corresponding to the
"breathing" mode.
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As shown in Appendix D, the first antisymmetrical frequency of the arch was 59. 9 cps,
and the "breathing" mode frequency of a complete ring was 317. 3 cps. The equivalent
darnping factor, v', wns as follows:

1' 59.9V A(0095) = 0. 018
317.3

Presentation of Numerical Results

Dynamic responses of the arch in the elastic range were obtained for peak loads of
200 lb/in. and 400 lb'in. For loads above 400 lb.'in., the inelastic behavior of the arch was
anticipated and the Inelastic program was used. As a comparison, the load of 400 lb 'in.
was repeated ia the inelastic solution. The loading was increased in increments of 100 lb in.
up to 700 lb./in, and then increased in 50-lb "in. increments, A maximum dynamic load of
800 lb/in. was used in the solutions.

The results of dynamic solutions for elastic response for peak loads of 200 Ib/in. and
400 lb/in. are given in Table C-1, along with the maximum values of bending moments,
axial forces, radial and tangential displacements, and the corresponding times when the
maxiraum values occurred. The inelastic responses for loading between 400 lbiin. and
800 lb/in. are given in Tables C-2, C-3, and C-4. Ali solutions were based on a 16-bar
system; however, data are presented for intervals of one-eighth of the arch length. At the
maximum load of 800 lb 'in., the convergence of radial and tangential displacements was
slow. The maximum displacements were not obtained at several locations of the arch as
indicated in Table C-4.

The maximum elastic and inelastic values of moments, axial forces, and radial and
tangential displacements at the quarter points and the crown of the arch are presented in
graphic form in Figures C-9 through C-12. The bending moment curves for the quarter
points coincide with each other in the Plastic range, but their signs are different. Bending
moments at the crown are comparativel, low. The maximum values of axial forces do not
vary appreciably at the quarter points and at the crown of t he arch, as shown in Figure C-10.
The maximum radial displacements occur at the 3/4-point and the maximum tangential
displacements occur at the crown of the arch.

The time interval within which the maximum values of various response functions are
attained is only a very small fraction of the entire load duration. The decrease of the load
from its peak value is very small within this time interval.

The time-variant traces of moment and displacements show that the major contribution
came from the first antisymmetrical mode of vibration. This observation can be made from
the moment curves and displacement curves of Figures C-13 and C-14 for a peak load of
200 lb, in. The period of major oscillations corresponds to the period of the first antisymmet-
rical mode of the arch in free vibration. It should be noted that the influence of the third
symmetrical mode is also present, but the effects are comparatively small.

The predominant oscillation of the axial forces occurs at a frequency corresponding to
the second symmetrical mode of vibration, which is close to the "breathing" mode for a
complete ring. The time variant traces of axial forces near the crown and supports of the
arch are shown in Figure C-15. It can be seen that the variation of axial forces along the
arch is small.

In the inelastic range, the response frequencies and modes of various functions are
modified. Increases in the natural period of the response curves are expected as the
stiffness of the arch decreases.
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Table C-i. Maximum Response From Dynamic Loading (Elastic Program)

- Radial Tangential
Moment Time Time Displace- Time Displace- TimeLocation i Force(in. -lb) (msec) (ob) (msec) ment (msec) ment (msec)

(I)_ (in.) (in.)

Po = 200 lb/in.
Left support 0 0 0
1/8 point -124,000 9.0 -19,100 1.5 0.202 8.9 -0.025 8.3
1/4 point -161,000 8.5 -19,500 8.0 0.278 8.6 -0.080 8.3
3/8 point -116,000 7.9 -19,100 8.0 0.187 7. 1 -0. 134 8.2
Crown 30,000 3.2 -18P800 1.5 -0.027 10.3 -0.155 8.15/8 point 118,000 9.0 -18,700 1.5 -0.221 8.0 -0.131 8.0

3/4 point 161,000 7.2 -19,100 1.7 -0.302 7.8 -0.075 7.6
7/8 point 123,000 7.7 -19,800 1.8 -0.215 7.8 -0.021 7.1
Right support 0 -20,300 1.8 0 0

PO = 400 lb/in.

Left support 0 0 0
1/8 point -254,000 9.0 -38,100 1.4 0.410 8.9 -0.053 8.3
1/4 pcint -328,000 8.5 -39,200 8.0 0.560 8.6 -0.165 8.4
3/8 poirt -233,000 8.0 -38,400 8.0 0.374 7.4 -0.272 8.3
Crown 61,000 3.2 -37,500 1.5 -0.062 10.2 -0.314 8.2
5/8 point 242,000 9.0 -37,400 1.5 -0.456 8.0 -0.368 8.1
3/4 point 327,000 7.2 -38,100 1.7 -0.617 7.9 -0.151 8.0
7/8 point 250,000 7.7 -39,600 1.8 -0.438 7.8 -0.041 7.1Right support 1 0 -40, 500 1.8 0 0

Table C-2. Maximum Response From Dynamic Loading (Inelastic Program)

Axial Radial Tangential

Moment Time Time Displace- Time Displace- Time
(in. -lb) (msec) (lb) (msec) ment (msec) ment (msec)

I (in.) (in.) j
PO P0  400 lb/in.

Left support 0 1 0 0
1/8 point -254,000 9.1 -38,000 1.5 0.405 9.0 -0.053 8.4
1/4 point -326,000 8.5 -39,000 8.1 0.552 8.6 -0.162 8.4
3/8 point -234,000 8.0 -38,400 8.1 0.371 7.2 -0.270 8.3
Crown 61,000 3.3 -37,500 1.5 -0.062 10.2 -0.312 8.2
5/8 point 242,000 9.1 -37,400 1.5 -0.454 8.1 -0.263 8.0
3/4 point 326,000 7.2 -38,100 1.8 -0.614 7.9 -0.151 7.4
7/8 point 251,000 7.8 -39,700 1.8 -0.434 7.8 -0.041 7.2
Rightt 251,000 8 -40,500 0 0

P o = 500 lb/in.
Left support 0 0 0
-/8 point -2P,7, 000 9.2 -47,500 1.5 0.517 9.2 -0.066 8.5
1/4 point -371,000 6.4 -47,000 1.5 0.724 9.1 -0.211 8.7
3/8 point -269,000 6.6 -47,000 1.5 0.461 7.0 -0.350 8.6
Crown 95,000 10.2 -46,800 1.5 -0. 122 10.5 -0.398 8.5
5/8 point 307,000 9.2 -46,700 1.5 -0.580 8.4 -0.334 8.2
3/4 point 408,000 7.8 -47,600 1.8 -0.783 7.9 -0.190 7.5
7/8 point 306,000 7.7 -49,500 1.8 -0. 546 7.9 -0.050 7.2
Right support 0 -50,700 1.8 0 0
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Table C-3. Maximum Response From Dynamic Loading (Inelastic Program)

Axial Radial Tangential

Moment Time Time Displace- Time Displace- Time
(in. -lb) (msec) (lb) (msec) ment (msec) ment (msec)(in.) (in.)

Po = 600 lb/in.
Left support 0 0 0
1/8 point -301, 0O0., 9.8 -56,900 1.5 0.690 9.8 -0.090 10. 5
1/4 point -393,000 6.4 -56,400 1.5 0.991 9.6 -0.296 10.2
3/8 point -278,000 5.5 -56,400 1.5 0.555 9.1 -0.480 9.9
Crown 129,000 9.8 -56,200 1.5 -0. 191 10.9 -0.530 9.8
5/8 point 354,000 10.4 -56,000 1.5 -0.785 10.6 -0.437 9.1
3/4 point 442,000 8.0 -57,100 1.8 -1.007 8.3 -0.243 8.9
7/8 point 330,000 6.0 -59,400 1.8 -0.672 8.3 -0.062 9.0
Right support 0 -60,800 1.8 0 0

Pc = 700 lb/in.

Left support 0 0 0
1/8 point -313,000 12.9 -66,400 1.5 1.010 12.8 -0.137 13.2
1/4 point -408,000 9.8 -65,700 1.5 1.428 12.8 -%. &0 13.1
3/8 point -278,000 5.1 -65,700 1.5 0.756 15.3 -0.719 13.1
Crown 139,000 9.8 -65,500 1.5 -0.261 11.5 -0.792 13.3
5/8 point 388,000 10.7 -65,400 1.5 -1. 147 14.1 -0.656 13.4
3/4 point 464,000 8.0 -66,500 1.8 -1.524 14.2 -0 352 13.3
7/8 point 352,000 5.6 -69,300 1.8 -0.960 14.0 -0.081 12.9
Right support 0 -70,900 1.8 0 '0

Table C-4. Maximum Response From Dynamic Loading (Inelastic Program)

Axial RadWial Tangential
Loain Moment Time Fre Time Displace- Time Displace- Time

Location)Moment c bForce (m sec) ment (msec) ment (msec)

n (in.-lb) (msec) (lb) (in.) (in.)

Po =fP 750 lb/in.

Left support 0 l0 0
1/8 point -3!7,000 12.9I -71,100 1.5 1.31S 19.1 -0.187 19.4
1/4 point -413,000 9.7 -70,400 1.5 1.880 19.1 -0.603 19.3
3/8 point -279,0)00 5.0 -70,400 1.5 0.990 19.0 -0.968 19.3
Crown 148,000 9.7 -70,200 1.5 -0.546 20.0 -1.068 19.2
5/8 point 399,000 11.1 -70,000 1.5 -1.561 18.0 -0.887 19.1
3/4 point 473,000 14.3 -71,300 1.8 -2.055 17.8 -0.462 19.2
7/8 point 355,000 5.6 -74,200 1.8 -1.262 17.6 -0.098 19.2
Right support 0 -75,900 1.8 0 0

P 800 lbWin.

Left support 0 0 0
1/8 point -326,000 12.7 -75,700 1.5 1.876 38.8 0.291 40. 0*
1/4 point -426,000 9.6 -75,000 1.5 2.645 39.0 -0.898 40. 0*
3/8 point -.279,000 4.9 -74,900 1.5 1.344 38.8 -1.423 40.0*
Crown 152,000 10.0 -74,800 1.5 -0.558 40.0* -1.567 39.2
5/8 point 407,000 11.1 -74,600 1.5 -2.345 40. 0* -1.320 40. 0*
3/4 point 492,000 8.0 -76,000 1.8 -3.062 40. 0* -0.657 39.0
7/8 point 364,000 5.4 -79,200 1.8 -1.845 40. 0* -0.120 38.8
Right support 0 -81,000 1.8 0 0

*End of solution; inaximum values were not obtained.
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Figure C-9. Maximum dynamic moments.
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Figure C-10. Maximum dyiamic axial forces.
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Appendix D

ANALYSIS FOR NATURAL FREQUENCIES AND BUCKLING LOADS

In the analysis of the two-hinged circular arch for its natural frequencies and buckling
.. , the active continuous structure of Figure B-I is reduced to a discrete framework

consisting of a series of rigid bars and flexible joints as described in Appendix C. The
mass may either be considered lumped at the joints or distributed along the bars. A uniform
static normal pressure may be introduced in the frequency equations; i.e., the frequencies
of the arch can be determined for free vibration or forced vibration. The theoretical devel-
opment of equations was performed by Eppink (Reference 15). Additional remarks are made
primarily for clarity and continuity of this report.

Derivation of Equations

In considering the uniform static pressure acting on the arch, the following additional
assumptions are made:

1. The arch maintains its circular shape under the external normal pressure.

2. The arch undergoes only a uniform compression under the external normal
pressure.

3. All measurements are taken from the compressed position of the arch.

4. The oscillation of the arch is small.

5. The effect of damping is negligible.

The above assumptions serve to linearize the vibration of the arch under uniform
normal pressure. The axial force, Pjt, can be expressed in the form

P -w L-cot . N. (D-1)
jt -2 j

where the first term represents the force due to uniform compression and the second term
represents the force due to displacements. By substituting Equations C-3 and D-1 into
Equations C-i and C-2 and omitting the product terms of No and MO, the following expres-
sions for Zjr and Zjt are obtained:

Z.r = -(N + Nk)sin -(M - 2Mj + Mk)COS

+ wLcos4 (Pk- @j)cot .cos- (D-2)

S- -Nk)cos ~+ El(Mi Mk) sin

w L + kP jcos I (D-3)2 Ok J) -2
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If the Axial deformation is taken into account, the components Wjr and Wjt of the
external forces are established by noting that

Pj + +4

* ~rSpj L- + k) w

Substituting the above expression into Equations C-4 and C-5, and neglecting the product
terms of 6tp, the following expressions for Wjr and Wit are obtained

Wir wcos -jw~e + *6) cos + 1 w L( - ~)in ~ (-4)

W. ~.w ( j) - sin ~ w !L(~ c (D-5)
i t 2 (6k 2, 2 k + )vo

"The components of the internal force, Zjr and Zjt, of Equations D-2 and D-3 can be
expressed in terms of deformations 6 and •i by using Equations C-16 and C-17. The

F resulting equations along with Equations D-4 and D-5 are then expressed in terms of displace-
t ments by using the first-order approximations of Equations C-8, C-9, and C-12. The

resulting expressions for Zjr, Zit, Wjr, and Wjt are then expressed in terms of displace-
ments Ajr and A-t.

At a naturaI mode of vibration the conditions of simple harmonic motion are satisfied
for each particle of the system, and the equations of motion, Equations C-6 and C-7, become

m iSjr ) 2 mj A jr = Zjr + Wjr (D-6)

m -W j 2 jt = Z + W. (D-7)

where w is the circular frequency of vibration.
Substituting the expressions for Zjr, Zjt, Wjr, and Wit into Equations D-6 and D-7,

simplifying by letting # denote the mass per unit length of the arch and r the radius of
gyration of the arch cross section, and introducing the following notations

c = tan• (D-8)

2

S(D-9)
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k = 4c sin (D-10)

the following expression for the equation of motion in the radial direction is obtained:

Ahr 4 + p 2 ) A ir -(6 - -2pC2 ) ( Ar ()Akr r ] kt

+ C [4 t -(2 p ) Aj it (2 + po) A k -Af

C L A LA 2+- C C D 2

The corresponding equation for the tangentiai direction becomes

c [-Ahr + (2 + P)Air (2 + P) Akr + A r]

+ c-2 A ht - pAit 2(P + C2 )Ajt PAkt _ c2 A]

X= AAt + k [c (Air - A k) + (A,, 2 Aj -A kt(D- 13)

The left sides of Equations D-12 and D-13 are applicable to joints 2 S j 5 n -2. The
boundary conditions must be considered in deriving the equations of motion for joints 1 and
n - 1. Figure D-1 is a schematic representation of the equations of motion for the general
interior joint j and the joints near the supports.

A system of 2 (n - 1) homogeneous linear algebraic equations can be obtained from
Equations D-12 and D-13 with specialized equations for the ioints near the supports. The
system of equations can be written in abbreviated form as iollows:

AA ,,B -,,A = 0 (D-14)

where A, B, and C are symmetric matrices of order 2 (n - 1), and A is a .dumn matrix
of the displacement Ar and At. There are 2 (n - 1) characteristic roots and vectors of the
above equations corresponding to the natural frequencies and mode shapes of vibration of
the system.
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It should be noted that for free vibration the load parameter k is set to zero and
Equation D-14 becomnes

AA - ABA = 0

For the buckling loads of the system, the frequency parameter A is set to Lero and
the following expression is obtained:

AA - kCd = 0

The mass of the system can be considered to be distributed along the bars of the discrete
framework instead of concentrated at the joints. The equations can be established by using
the Lagrange equations of motion. A detailed derivation is presented in Reference 16. The
resulting equations can be presented in abbreviated fcrm as follows:

AA - AB'A - kCA = 0

where W is a symmetric matrix of order 2 (a - 1). The terms XB'A can be obtained for the
equations of motion in the radial direction as follows:

A.(cos i + 
4 Ajr + cos Okr÷ sin O - sin 4kt) (D-15)

and for equations of motion in the tangential direction as follows:

A.1 (-sin OA4 ir + sin 0 4 kr + cos 0 A 4A. ÷ cos Akt) (D-16)
6 r+ rit jt k

For geometrically symmetrical structures, the natural modes of vibration are either
symmetrical or anti symmetrical with respect to the line of symmetry of the structure. This
can be utilized to determine the complete set of natural modes and the associated frequencies
by solving two characteristic value problems, each of order (n - 1) instead of one of order
2 (n- 1).

Let joint k be located at the line of symmetry of the discrete framework. For
antisymmetrical modes, the radial displacement, Akr, at joint k is zero, and

-AIr A jr A It - it

Amr i -r A mt A it
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For symmetrical modes, the tangential displacement, Akt, at joint j is zero, and

lIr A jr A it A jt

Amr A ir A mt A it

Figure D-2 presents the left side of Equations D-12 and D-13 for joints j and k in block form.
As an example, the frequency equations for a 12-bar system are presented in matrl'%

form in Tables D-1 and D-2 for antisymmetrical modes and for symmetrical modes,
respectively. In order that the same matrix equations be applicable to frequency as well as

S" I buckling load calculations, three additional parameters, x, y, and z, are introduced.
For free vibration of concentrated mass systems

x = y = 0 , z =0

For free vibration of distributed mass systems

X I2 y = L Cs0Z = Ii

For buckling loads

2k y = -k (2 z = -ok

c

Computer Program

A computer program has been completed which can calculate either the natural
frequency or buckling load of an arch of uniform cross sectioa based on the equations given
in Tables D-1 and D-2. The source program is written in FORTRAN and can be carried out
on an IBM 7094 or IBM 162011 computer. It should be noted that the number of bars consid-
ered is limited only by the memory capacity of the computers. However, solutions for more
than 40 bars are not recommended considering the computer t!me involved and the very slight
increase in accuracy.

The natural frequency can be determined for either a concentrated mass system or a
distributed mass system. For natural frequency calculations, a uniformly distributed load
can be acting on the arch. A special case occurs when the natural frequency vanishes: the
buckling load for the system is obtained.

The source program can be subdivided into the following:

a. Determination of natural frequencies and buckling load

b. Determination of natural modes

It is possible to divide the program so that a smaller computer can be used for the solutions.
To facilitate this operation, complete flow charts are given in Figures D-3, D-4, D-5, and
D-6 for general analysis of arches, evaluation of matrices, search for roots, and vector
components. The source program in FORTRAN is given in Program D-1.
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period if -or,

Figure D-3. Flow diagram, analysis of arches.
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Figure D-6. Flow diagram, vector components X and R.
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Program D-1. Natural Frequency and Mode of Circular Arch

C PROGRAM OF CIRCULAR ARCH ANALYSIS
C PURPOSE OF PROGRANý. TO EvALuATE X2 IN MATRIX OF AX=O.
C PROGRAM DETERMINES NATURAL FREQUENCIES OF CIRCULAR ARCH
C ANTI-SYMMETRICAL AND SYMMETH|CAL MUDE SHAPFS
C BUCKLING LOAU AND DEFLEtTEU SHAPE OF TAE ARCH
C PROGRAM CONTRuLLELU BY VALUES QF IFREQ
C IFREu 1, CONCENTrATEC, MASS SYSTEM ANTI-SYMMETRICAL MODE
C IFREO 2. CONCENTRAfEQ MASS SYSTEM SYMMETRICAL MODE
C IFREQ 3, DISTRIbUTED MASS 3YSTEM ANTI-SYMMETRICAL MODE
C IFREQ 49 DISTRIbUTED MASS SYSTEV SYMMETRICAL MODE
C IFREQ 5, eUCKLING LOAD OF ANTI-bYMMFTRICAL MODE
C IFRTE; 69 BUCKLING LOAD QF SYMMETRICAL MODE
C MODIFIED 25 JuNE 1965 ( RICHARD H. CHIU )

DUUBLE PRECISION AX9R9DIJMPDET9F09F1 F2TF3
DIMENSION A(12,12),X(12)

901 FORMAT (15,1SeB,8IS*8,3E15,8)
902 FORMAT (/1lX"4HROUT,9Xt8HRESIDUAL8X.SHFREO,1lOX,6HPERIOD/I

1OOC DO 1032 IFREQ=196
C READ INPUT TAPE 59 CONTROL CARD

READ (59 1JI1)NRO0T9XO9FMAXDELIA9IOL9XK
1001 FORMAT(ItSL15,8I

C REAO INPUT TAPL 59 INPUT PARAMETERS
C NsORDER OF DETERMINANT
C RC= RADIUS OF ARCH
C PHI= INCREMENT OF CENTRAL ANGLE
C RL= RADIUS OF GYRATION OF ARCH SECTION
C UZMU
C EI=E*I

READ 459 IJU1) NRCPHIvRLUEI
XL=2.*RC*SIN (PHI/2.)
C2=SIN (PHI/2.)/CO, (PHII2.l

C FOR BUCKLING LOAD
IF (IFREO-5) 10039100291002

1002 CuI=C2*XL**3)/(2,*EI2
GO TO 2000

1003 CI=XL**4*U/(EI*COS (PHI/2.)**2)
RHO=(XL/RLI**2

2000 DO 1032 JROOT=1sNROOT
WRITE (69 902)

C BEGIN SEARCH FOR ROOT
1004 IRET-1

IRETF=O
X1=XO

i X2=X1

GO TO 1016
1005 FI=F2

WRITE (6, 9UI) IRETX2,FZ

IRET-2
1009 X2=X1+DELTA

GO TC IC16
1010 IF(Fi*FZ)101391013tl011
1011 XI=X2

WRIi- (6, 9U1) IRETIx2*Fz
GO TO 1009

1013 X3=X2
F3:F2
X4=X3

IRET=3
XO=X3
FO=F3

1015 WRITL (6, 9JI) IRET9XZF2

X2=XI+(X3-XI)*FI/IF1-F3)
GO TO 1016 Continued
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Program D-1. Natural Frequency and Mode of Circular Arch (Contd)

C EVALUATION OF DETERMINANT OF ORDER N
C A., PLOTKIN AND We WILCUASON
C 29 AUGUSI 1963
3U05 DETa4.

0O 3013 K=29N
KMISK-1

C SEARCH FOR NON-ZERO PIVOT ELEMENT
DO 3006 Kl.KM1,N
IF(A(KMIK1I)3~jU7s30U6936JjP

30U6 CONTINuE
C DETERMINANT IS ZERO

UET mU.
GO TO 3014

C DIVIDE COLUA~N bY PIV07AL LLEMEWr
3007 DO 3008 K2wK9N
3008 A(K29K1IxA(K2.VI)/A(K1*KIl

IFIKM 1-K1) 3009, 3011, 3C09
C MOVt PIVOI LLEM. TO UPPER LLF1 HAND CORNER OF REUUCLt) DLILRMINiANI
C UPDATE SIGN FOR INTERCHiANGINCO COLUMN.,:
30U9 DET~-DE1

DO 3010 KZ=KM1.N
DUMP=AIK2*KMlI)

3G10 AIK29K1)=DUMP
C REDUCE ORDER OF OLT-:RMINANT BY ONE
3011 DO 3012 1=KPN

Do 3012 ,JaK*t
3012 Afs ,JI=A( I .J-A4 I KMlI)*A(KMTJi
3013 DET=DET*AAKM19KMI)
3014 F2=DET*A:NoN1

GO TOI100S,11010olI191,RET
C SEARCH FOR ROOT BY METHOD OF NESTED INTERVALS
1017 IFI AbS (X'-X21-T0L 10299102991018
1018 IF4X31 10I9slU2U%1(J19
1019 IF(AbS (I.-X2/X41-TOL)1U299I029vI020
1020 IF(F1'F3)1.21 ,1u219I029
1021 tFCF1'F2 11026,1029,1025
1025 X1%X2

X4xX 1
Fl=F2
Go TO 1015

1026 X3=X2
X4rX3
F3=F2
GO TO 1015

C IGNORE IF ASYMPTOTE
1029 IF(FMAX-ABS UZ)IUO4*1U049103D
1030 XFzX2*X2

P=1 */XF
wRITE 16* 9UI~JROOTvX2#F2,XF9P

C GO TO BI16 TO EVALUATE ELEMENT,: OF COEFFICIENT MATRIX
IRETFaI
GO TC 1016

C SUU-PROGRA14 TO SOLVL HUMUGEriEUU: iIM'ULIANEOuS EovATIUN_)iSRANK'N-li
C We WILCOXSON
C 30 AuGUST 1963
C OUTPUT MATRIX A

7000 wRItE 16. 75.0)

Coot I nued
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Program D-1. Natural Frequency and Mode of Cir-!ular Arch (Contd)

7500 FORMAT114X,8HMATRIX A)
Dr 3 JJzl.N
DO 3 Tialt:

3 WRIT'- (6, 2)J.J9IIsA(jJ9II)
2 FORMAT42HA( ,I391H9I3s2H)=D14.8)

C NOTE iHAT N-MZ=RANK OF LOEFFICIENT M~kTRIX
MZ=C
00 7028 M1=19N
M5-M 1-MZ

C SEARCH FOR NON-ZERO PIVOT ELEMENT

0O 70CI M2zM5tN
IFITOL-ABS (A(M2*M1I)I7U02,7OO1:O0U1

70U1 CONTINUE
NZZMZ+1
G0 TO 7028

70)2 IF(M2-M517003,7uO597C,03
C INTERCHANGE ROWS TO OBTAIN NON-ZERO PIVOT ELLMENT
7003 DO 7004 M3=MlN

DUMP=A (M5 ,M3)
AC MS M3 )zA( M2 M3 I

7004 A(M2sM3)=DUMP
7005 DO 70Co M3=M1,N

M2sN-M3+Ml
7006 A(M5*M2IzA(M5,F42) A(M59M1I

DO 7018 M4=lN
IFNI 4-14!,l 7007,7018,7u07

7007 0O 70U8 M3=Ml,N
M2xN-M3+Ml

7tý08 A(M4,M2)=A(M4,M21-A(M4,MI )*A(M5,M2)
7018 CONTINUE
7028 CON4TINUE

C WRITE OUTPUT TAPE 69 TOLERAbLE ZERO
WRITE (6, 5IA(NvNJ

5 FORMAT(15HTOLERABLE ZEROuDIS.8)
C VERIFY THAT RANK IS N-1

IFfMZ-1 17099,7013,7009
7009 M1=N-MZ

WRITE (6, 7010) MI
7010 FORMATU11MERR RANKrTI'.)
7011 WRITE (6, 7u12)
7012 FORMAT114HZERO COMPGNENTI

C VERIFY THAT ALL SOLuT!ONS ARE NON-ZERO
7013 NM1=N-1

DO 7014 M1=1,NM1
IF(1*-AfM1*M1))7UI1,70149701

7014 X(Mj =-A(M1,N)
XC N)=1.

C CALCULATE RESIDUALS BY MATRIX MULTIPLICATION
C EVALUATE ELEMENTS OF MATRIX

IRETFm2
GO TO 1(J16

5GU4i WRITE (6, 75u1)
7501 FORMATCI7H ý;0LUlIUN VLL1OR915X.1bHRLSIVUAL VLCTOR)

DO 5006 Iz1,N
R=0.
DO 5005 J-19N

5005 R=ACIsjI*X(J)+R
C OUT PiT
5006 WRITE (69 5uj07)I*XfI,9!9R
5007 FORMAT C2HXC ,I2,2H)=9,l)4.8,1UX,2HR( *I~,2H)=,014.8)

Continued
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Program D-1. Natural Frequency and Mode of Circular Arch (Contd)

1U3W CON TI %L,
GO TO lCr'W

C USER MUST IN 3ERT FUNCTION LVALUATION 5TATErMf.NTS AFTER 1016
ANL) THEN COMPILE AN (JBJLCT PROGRAM

Ci EVALUATION ROUTINE FUR r-iATRIx ELFMENT.J
1016 CONTINUE

00 2017 I1,1N
D0 2017 J-19N

IF ( IrREo-51 2u19v2vl892Qlb
2018 ALPHAxC1*X2

GO TO 2020
2019 ALPHAuC1*39.47841?*X2*.4
2020 NluN-1

NW=N1/2
AC 1,1 z5o+2**RHO*C2*C2
JlZNW+1
AfltJl)uC2
AEJlJi .112o*RHO+C2*C2
GO TO (121,1I229121.122,1Ž1.1221 ,1 FREO

C ANTI-SYMMETRICAL :M011ES
121 A4NW9Nw)=AC 1.11

AgN~~,Nl I=-C2
A(N1,NI =ACJ1,Jll
ACNW-1 ,N1-C2
ACNWN,=C2* C2.+RHO)
ACN-2sN)s-C2*C2

ACNsNl7A~jl.Jl)+C2*C2

Go TO 123
C SYMMETRICAL MCDES

122 A(NWtNwl=ACI191+2.
ACNwNlU= C2
AC Ni ,Nl =AC Ji, Jl+2. *C2*C2
A (NW-i ,N 1.
A(NWtN) .RHO*C2*C2-L..
A(N-29N1= C2
ACNINi.-C2*(2.+RHO)

123 1=1
00 101 Jx2,NW
Ag I9J).RHrO*C2*C2.-4.

101 IzI~1
Jul
DO 102 J-3,NW
AC I .41=1

102 1=1+1
J2=Nw-1
DO 105 J=29J2

105 ACJJI=Al 1,1 +1.

41 NW+2
00 103 J--JjN1
ACIJIzC2*C2*+RHt-O

103 1-1+1
1=1I
JlaNWd+3
D0 104 JzJI.N1
ACI,*Jiu-C2

Continued
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Program D-1. Natural Frequency and Mode of Circular Arch (Contd)

104 131+1

JlaNW+l
J2zN-2
DO 106 J=J1,J2
Al I*J)a-C2*(2.+RHO)

106 1=1+1
1.3
J2*N-3
DO 107 J.JI9J2
Al 1*J)&CZ

107 M1+11

J1*NW.3

00 108 JzJI9N1
Al IJI.-C2*C2

108 T.I+1

JI xNW.2
DO 109 JwJI9N1
All .JI=-RHO

109 I1+1.

J2=N-2
DO 110 J-J1.J?

110 A[JoJl*2.*lRHO+0C2*C2b
NW-NW.1
GO TO I 125,125,131,1319140t1401,1FRE0

C BUCKLING LOAD
140 ASNa-ALPHA*C2

DO 143 J=NwvN
143 AIJoJI=AI JJ -2.*ALPHA

J1zNw.1
Do 144 J=J19N

144 A(J-lJIo =A(J-1 ,J).ALPHA
ACS--ALPHA*(I2.tl.Ie/C2*C2 I
ALPHA=ALPHA*2./(C2*C2)
J2=Niw-1
DO 141 J=2,J2

141 A1J-I9J)=AIJ-IJ)-AC5
DO 142 J1,oJ2

142 AIJJ) =A (JJI-ALPHA
GO TO 139

C CONCENTRATED MAASS SYSTEM
125 DO 126 Jl,%N
126 A(J9J)vACJJ)-ALPHA

GO TO 127
C DISTRIBUTED MASS SYSTEM4

131 ASN-ALPHA*SIN (PHI)/6.
AC~zALPHA*COS (PHI 1/6.
ALPHA=ALPHA*2. /3.
DO 132 J1,.N

132 AIJj)xAfJJ)-ALPHA
J2xNW-1
D0 133 J=29J2

133 A CJ-1 J) .AfJ-1 ,JI-ACS

DO 134 JzJ19N
134 A(J-1.j)xAIJ-1 ,JI-ACS

Continued
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Program D-1. Natural Frequency and Mode of Circular Arch (Contd)

139 J2mN-2
I w2
DO 135 J-NW9J2
Al! ,J~aA( I J)-ASN

135 1s1.1
J1RNW+1

DO 136 JwJl9N
Al! ,J IzAC IJ)-CASN

136 1.141,
127 DO III I.2,NI

NC.!-I
DOl~liJnl NC

II1 A(IJIsA(J,1)
DO 112 Jl,9N1

112 A(NJiu2**AfJ9N)
IF IIRETF-11 300597000,5C04
END
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Presentation of Numerical Results

The input parameters used in the numerical analysis of the natural modes and the
associated frequencies of the two-hinged circular arch are the same as those used in the
elastic program of Appendix C. In the solutions presented in this section. the effects oW the
number of bars and the assumptions regarding the mass distribution of the discrete frame-
work are studied.

Solutions for increasing the number of bars from 8 to 40 in the discrete framework,
considering Lhe mass to be concentrated at the joints, are tabulated in Table D-3. The
corresponding results for the distributed mass system are given in Table D-4. The first
six natural frequencies of the antisyminetrical and symmetrical modes are presented in both
tables.

A comparison of the antisymmetrical modal frequencies for the concentrated mass and
distributed mass systems is presented in Figure D-7. The frequencies were plotted against
the number of bars used in the discrete framework. A corresponding comparison of the
symmetrical modal frequencies is presented Jn Figure D-8. It should be noted that both
assumptions regarding the mass distribution of tne framework lead to the same asymptotic
frequency. However, the asymptotic frequency can be obtained much more rapidly by the
distributed mass assumption.

As shown in Figures D-7 and D-8, nearly all the asymptotic frequencies are obtained
for fewer than 40 bars. For practical purposes, the solutions of the 40-bar distributed mass
system may be regarded as "exact" solutions for the arch considered in this report.

The normalized natural modes of vibration of a 40-bar distributed mass system are
given in Figures D-9 and D-10 for antisymmetrical and symmetrical modes, respectively.
It is observed that the normalized modes are predominantly flexural. However, the axial
deformation of the second antisymmetrical mode is significant and is closely related to the
'breathing" mode of a complete ring having the same cross-sectional properties. A
comparison can readily be made by considering the frequency of vibration of a complete ring of
ixniform cross section as given by the following expression:

which is calculated to be 317. 3 cps for the cross-sectional properties of the arch. This value
is comparable to the frequency of 301. 1 cps for the second symmetrical mode of the arch.
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Table D-3. Natural Frequencies and Periods of a Two-Hinged Arch

Concentrated Mass

Number of Bars Period

Mode 8 12 16 20 24 32 40

Frequer~cies for Antisymmetrical Modes (cps)

1 57.66 58.89 59.30 59.51 59.63 59.72 59.79 16.73

2 224.5 250.3 259.8 264.2 266.7 289.3 270.4 3.70

3 392.1 510.8 555.6 575.9 586.6 596.7 601.1 1.66

4 644.3 655.4 664.2 669.5 673.2 677.5 679.9 1.47

5 --- 780.3 922,3 994.6 1,036 1,078 1,098 0.911

6 --- 970.4 1,276 1,441 1,536 11,635 1,682 0.595

Mode Frequencies for Symmetrical Modes (cps)

1 128.5 135.2 137.5 138.6 139.2 139.8 140.1 7.14

2 286.1 295.8 298.1 299.3 299.7 300.2 300.4 3.33

3 329.2 388.0 411.5 422.8 429.3 435.5 438.8 2.28

4 414.3 651.9 739.2 782.6 806.9 831.6 843.1 1.19

5 --- 886.5 1,099 1,191 1,206 1,211 1,213 0.824

6 1,172 1,197 1,208 1,233 1,286 1,350 1,382 0.724

*Natural period (msec) based on 40-bar solutions.
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Table D-4. Natural Frequencies and Periods of a Two-Hinged Arch

Distributed Mass

Number of Bars Period

Mode 8 12 16 20 24 32 40

Frequencies for Antisymmetrical Modes (cps)

1 59.83 59.86 59.86 59.86 59.86 59.86 59.86 16.71

2 270.2 272.0 272.3 272.5 272.5 272.5 272.5 3.63

3 583.1 607.1 608.5 608.7 608.7 608.7 608.7 1.64

4 677.5 685.4 685.6 685.4 685.2 684.7 684.7 1.46

5 1,095 1,125 1,131 1,132 1,133 1,134 0.882

6 --- 1,569 1,728 1,752 1,757 1,759 1,759 0.569

Mode Frequencies for Symmetrical Modes (cps)

1 140.3 140.5 140.5 140.5 140.5 140.6 140.6 7.11

2 302.3 301.6 301.4 301.1 301.1 301.1 301.1 3.32

3 432.1 442.2 443.4 443.6 443.8 443.8 443.8 2.25

4 733.0 849.6 860.4 862.8 863.4 863.9 864.1 1.16

5 --- 1,233 1,226 1,222 1,220 1,218 1,217 0.822

6 1,257 1,347 1,420 1,433 1,436 1,438 1,439 0.695

*Natural period (msec) based on 40-bar solutions.
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first antisymmetrical mode of vibration, fn W 60 cps

second antisymmetrical mode of vibration,

fn 272 cps

"third antisymmetrical mode of vibration, fn w 609 .ps I

Figure D-9. Antisymmetrical modes of two-hinged arch.
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S~first symmetrical mode of vibration,

S~fn- 141 cps

second symmetrical m~ode of vibration, fn" 301 cps

aI

"third symmetrical mode of vibration, fn 0 444 cps

Figure D-10. Symmetrical modes of two-hinged arch.
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Appendix E

SIMPLIFIED ANALYSIS OF A CIRCULAR ARCH

In the static analysis (Appendix B) of the two-hinged arch of Figure B-1, the distributions
of moments and stresses are basically antisymmetrical and the axial force along the arch
does not vary appreciably. In the dynamic analysis of Appendix C, the response of the arch
is largely contributed by the first antisymmetric mode of vibration; the axial force also
remains essentially uniform along the arch. The findings suggest that a simplified analysis
and design procedure similar to those proposed by Newmarkf§,19 can be used. All notations
in this appendix conform to the previous definitions unless otherwise noted.

Static Analysis

Assuming that the principle of superposition holds true in the elastic range of the arch
response, the uniform load distributed over one-half the arch length can be obtained by two
components as follows:

1. Symmetrical loading uniformly distributed over the entire arch span with a
magnitude equal to one-half the original load.

2. Antisymmetrical loading consisting of an inward uniform loading distributed over
one-half the arch length and an outward uniform loading over the other half of the
arch length. The magnitude of the antisymmetrical loading is also one-half the
original load.

The sum of the two components is equivalent to the original loading condition.
For a circular arch with uniform cross section along its length, the critical section is

at the quarter point of the loaded half of the arch. The static axial force at the critical
section due either to symmetrical or antisymmetrical loading is given by the approximate
expression as follows:

Pt = wR (E-1)

For the symmetrical loading, the maximum bending moments at the quarter points are
given by the approximate expression

wR (E-2)

For the antisymmetrical loading, the maximum bending momeut at the quarter point
under the inward loading is given by the approximate expression•

S2 2 9 wR (E-3)
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and the corresponding buckling load, Wcr, can be obtained from

4 (LI 2  El (
Wr 002 1 )I~(Ei

Stress amplification as a result of the tendency of the arch to buckle under the axial force can
be expressed by the amplification factor

A 1 (E-5)m 1 •w

w
cr

The amplification factor will be used as a multiplier for the moment terms of Equations E-2
and E-3. The total static moment is the sum of M 1 and M2; the stresses and strains
caused by the bending moment and the axial force can be obtained by applying Equations B-30

7 through B-33. The static yield condition may be established with the aid of stress-strain
curves such as shown in Figure B-8.

Dynamic Analysis

The above static expressions of Equations E-1 through E-3 are used for the simplified
dynamic analysis by introducing a dynamic amplification factor, D, for a step function load,
as follows:

2,rt
D = 1 - cos -T

where T is the appropriate response period of each of the three functions considered. The
amplification factor, D, reflects the time-variant characteristics and the frequency of each
function. The above expression can be expressed in terms of the functions of a variable,
x, as follows:

D(x) = 1 - cos,'r (E-6)

where x is the particular variable of Equations E-1 through E-3.
As shown in Appendix C, the frequency of the axial force corresponds to the "breathing"

mode of a complete ring. The simplified dynamic response of the axial force is given by the
expression

Pt(t) = 1 - cos T Pt)] pt (E-7)
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where the period, T (Pt), is given by

T(Pt) 27r II

The moment due to the symmetrical loading varies at the frequency of the first
symmetrical mode of vibration. The time variant response of moment at the quarter points
can be expressed as

Ml(t) = [1 - cosT t M1  (E-8)

where the corresponding period is given approximately by

2 (R 0o)2A
T(MI= A E

where Am is given in Equation E-5.
The moment due to the antisymmetrical loading varies at the L equency of the first

antisymmetrical mode of vibration. The time-variant response M• moment at the quarter
point under the inwtrd loading can be expressed as

r 2wtl
M2 (t) - cos T-(M 2 )J M2  (E-9)

and the corresponding period is given approximately by

T (M c(R 0 )2 A
(2) m 2E7

where

n 2C = +lT

and

2f7

00
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The total time-variant moment is obtained by summing the results of Equations E-8
and E-9 at each time. The stresses and strains at the quarter point under the inward loading
can be obtained by the same procedure used in the static analysis.

It should be noted that the maximum dynamic amplification factor, D(x), of Equation
* E-6 is two for a step function load.

Presentation of Numerical Results

A computer program (Program E-1) based on the procedure described in the previous
sections was used to obtain the numerical solution of the simplified analyses. Comparisons
of the natural periods of vibration for the firct antisymmetrical mode, the first symmetrical
mode, and the second symmetrical mode are m.i.de between the simplified analysis and the
corresponding values of Appendix D, and are presented in Table E-1. Close agreement is
obtained in all cases.

Comparisons between the simplified analysis and the more rigorous analysis of the
dynamic response of bending moment and axial force as given in Appendix C are presented
in Table E-2. Similar comparisons for static values are presented in Table E-3. Compari-
sons of the dynamic response of axial forces show excellent agreement. The difference in
the static values of axial forces is a result of the elastic support conditions introduced in
Appendix B. The static bending moments (if the simplified analysis are slightly higher than
the corresponding results of Appendix B. 1 te large difference (about 21) percent) in the
dynamic moments is due to the damping effects of the system considered in Appendix C; the
simplified analysis did not consider damping.

Table E-1. Comparison of Natural Periods of the Simplified Analysis
to the Results of Appendix D

Antisymmetrical Symmetricai
(msec) (msec)

Load
(lb/in.) First Mode First Mode Second Mode

1 2 1 2 1 2

200 17.0 16.7 6.3 7.1 3.0 3.3

400 17.3 16.7 6.4 7.1 3.0 3.3

600 17.6 16.7 6.5 7.1 3.0 3.3

1 - Reu-lts of the simp'ified mialysis

2 - Results of Appendix D
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Table E-2. Comparison of Maximum Dynamic Moments and Axial Forces
of the Simplified Analysis to the Results of Appendix C
(at 3/4-point of the arch)

Simplified Analysis Appendix C

Load Axial Axial
(lb/in.) Moment Time Force Time Moment Time Time

(in. -lb) (msec) (Fb) (msec) (in. -lb) (msec) (rb) (msec)

200 204,000 9.0 19,100 1.6 161,000 7.2 19,000 1.7

400 415,000 9.2 38,100 1.6 327,000 7.2 38,100 1.7

600 634,000 9.4 57,200 1.6 ,-42,000 8.0 57,100 1.8

Table E-3. Comparison of Static Moments and Axial Forces
of the Simplified Analysis to the Results of
Appendix B

Moments Axial Forces
Load (in. -Ib) (Ib)

(lb/in.)
1 2 1 2

200 103,500 95,300 9,600 8,500

400 210,700 194,200 19,200 17,000

500 266,300 245,200 24,000 21,300

1 - Results of the simplified analysis

2 - Results of Appendix B
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Program E-1. Simplified Analysis of Circular Arches

C SIMPLIFIED ANALYSIS OF CIRCULAR ARCHES
DIMENSION T 3)oX(3) ,FT(3) .E(4)

1 FORMAT C14.,6E12*6.I'.)
2 FORMAT C/t4oZJli HALF LOADED ARCH ATvF8*2,6H LR/IN/I
3 FORMATC/6H TtME6X4HAX F7X6HMCMAXI7X5H5TCT)7X5HSTCB)8X'.HSCTS8X
I 4HSCR3/!

4. FORMAT (Fa.4..GE12o6)
5 FORMAT C/9X2HEAlOX2HMUlUX31LAY9X3HSUIM9X2HEI/!
8 FORMATC,/I4 kw*E12.6,SIPHIU=.E12.6*5H PCR29E12e6*5H FAX.vElZ.6l
7 FORMAT 45H NzoElZ.695H MSz.ElZ.695H MAtE1Z.6i
a FORMAT (SH TNa*E12o695H TMSu.E129695H TMA29E1296)

C READ CONTROL CARD
READ 1s NI*R*PH10,PODP*TO*OTNJ
EIz0*
EAwC.
1EAYwO.
U100.

5 PUNCH 5
DO 11 L81o4
READ 1, JoM9S9YoFCL)*D

UMmUM4AO40o./C 1728**386.4)
AYwA*Y*E CL)
El UEI+AY-Y+A*H*H*E CL) /12.
EA=EA.A*E CL)
EAYsEAY+AY

11 PUNCH 1. LsEAsUMoAY#EAY#E!
ClzEAY/EA
C2&D-C1
EI=EI-FA*Cl*Cl
PUNCH It L9EAvUM4,CI9C2,EI
P1=3. i4.l927

P=PO+oP
X(1)'P*R

FAXal./(I.-P/PCR)
S=FAX*C R*PHlOI'*2
X(2)5S*P/C(1.-C2.,(3.*C) )**2)*216.)

* ~X(3)=5SoP/((1.-l./(C*CI '*32*.
T(! D2.*PI*R*Z5ORT(UM/EA)
S=S*SQRTtUM/EI)

CIw(C*C+1.51?#CC'C-l.)
T(3)=CI*$/CZ.5PI
PUNCH 6o RoHI0-:PCR;FAX
PJNCH 7. X(I),X(2)tX(3)
PUNCH So TUI,1C(2),TC3) Continued
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Program E-1. Simplified Analysis of Circular Arches (Contd)

PUNCH 29 19P
rPUNCI 3
TOaU.
DO 31 JzI9Nj
XT-TOeOT
DO 21 K&193
AF-1a-CO5I?*UPI*XT/T(KiI

21 FT(KlaX(IK)*AF
XMzF T(2 .FT (11
STeFTjI /rh+XM*C1/FI
SBzFTji/ ,A-XM*(2/rT
STT=ST.* (2)
ST8=BSB'E(&
PUNCH 49 XT9FT( I 9X~oSs,5 ýTC ,T1Sd

31 TO=XT
32 CONTt4',JF

PAu.;
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Appendix F

PHOTOGRAPHS OF TESTED ARCHES
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